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1. Introduction 

1.1 Project 

The project “A Model-Based Approach to Battle Execution Monitoring” involves a form of 
exploratory mathematics for military application that is intended to lead to more basic research 
with greater payoff.  We compare an updated-parameter model trajectory to a planned-parameter 
model trajectory.  There are interesting problems in doing such comparisons from a “least-
squares” type standpoint and basins of attraction.  As a practical matter, various tactical 
considerations such as attrition levels in selected time make such comparisons more 
straightforward.  We examine such in this project in the hopes of being able to continue the more 
difficult research based on the tools and foundations developed here.  This is not the innovative 
basic research, but rather sets the stage and tool formats for subsequent exploration and novelty.  
Briefings to advisory bodies have been generally positively received, and management has 
offered good suggestions for improvement. 

This project was motivated somewhat by the changing nature of course of action (COA) 
analysis, in particular, incorporation of the notion of commander’s intent.  This formed a 
justification for the gross modeling of battle in the abstract, which lends itself to qualitative 
analysis, use of rough estimates, and consideration of the derivatives of the trajectories of 
conflict.  Here is a good place to mention a quote from the father of this sort of combat analysis,  
“There are many who will be inclined to object to any mathematical or semimathematical 
treatment of the present subject, on the ground that with so many unknown factors such as the 
morale or leadership of the men, the unaccounted merits or demerits of the weapons, and the still 
more unknown ‘chances of war,’ it is ridiculous to pretend to calculate anything.  The answer to 
this is simple: the direct numerical comparison of the forces engaging in conflict or available in 
the event of war is almost universal.  It is a factor always carefully reckoned with by the various 
military authorities; it is discussed ad nauseum in the press.  Yet such direct counting of forces 
is, in itself, a tacit acceptance of the applicability of mathematical principles, but confined to a 
special case.  To accept without reserve the mere ‘counting of the pieces’ as to value and to deny 
the more extended application of mathematical theory, is as illogical and unintelligent as to 
accept broadly and indiscriminately the balance and the weighing machine as instruments of 
precision, but to decline to permit in the latter case, any allowance for the known inequality of 
leverage (1).” 

The usefulness of mathematical modeling for combat analysis can then be considered well-
accepted.  We can use it to understand somewhat the dynamics of conflict, and hence can invoke 
it, at least iteratively, as a tool for developing plans for the mission.  But a more difficult 
problem, again one that helped motivate this project, is the question of what triggers the need for 
replanning; that is, how one realizes that the actual battle is deviating unacceptably from that 
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envisioned.  This is certainly part of the military art of experienced commanders, but whether it 
can be brought practically into the realm of science remains an open question.  One reason to 
monitor a battle is to see if it goes too far off track.  How do we know it is off track? 

The basic intent was to use this project as a launcher for novel research into other types of 
execution monitoring and dynamic replanning.  An ongoing area of research is the problem of 
evaluation of “goodness” of a COA.  A COA is a feasible way to accomplish a mission that 
follows the commander’s guidance, will not result in undue risk, and is noticeably different from 
other actions being considered (2).  That is, what makes one plan “better” than another?  Can it 
be better statically, as is often done by planners, or only dynamically? Can a plan be shown to be 
good only at the end of the battle? 

We proposed an application, building on classic and newer techniques of mathematical 
modeling, to dynamic battlespace decision support.  Technical challenges included investigations 
into goodness of the underlying model, determination of input parameters and values, and 
transformation of results for use in the tactical domain.  We intend to develop a set of algorithms 
to be coded into a computerized prototype of a command staff decision aid.  This work 
constitutes portions of a prototype system dynamically linking battle plan generation/analysis 
with execution monitoring.  The technique should permit comparison of a plan, in terms of 
desired end state and other measures, with the trajectory of the conflict in phase space.  During 
planning, and particularly during monitoring, if analysis shows the trajectory does not permit the 
end state, the user is to be helped with adjustments enabling the end state or be alerted to the best 
results achievable. 

We sought application of results in nonlinear dynamics to such problems.  There has been 
considerable philosophical discussion concerning the sensitivity of combat to small variations in 
initial conditions (“for lack of a nail the kingdom was lost”), but we seek mathematical rigor in 
treating combat as a dynamic system.  We are also interested in whether notions of optimal 
control theory can be applied to such analyses, perhaps ultimately leading to tools for monitoring 
divergence from a battle plan and making changes.  Can combat be analyzed (at least in a 
qualitative sense) that allows reasonable measurement of the influences of various factors? 

1.2 Report 

In this report, we concentrate on expositions concerning the main technical results with regard to 
the design and implementation of the prototype, including the nature of decision aids based on 
these concepts and particular parameter estimation techniques.  These discussions are followed 
by subsections dealing with ancillary aspects (such as the interface and control theory) that will 
be developed as part of the follow-on work.  Note that some of this is like a tutorial.  This is on 
purpose.  The mathematical derivation is necessary to enable the construction of algorithms and 
hence the prototype.  We entered into this project with the intent, as explicitly laid out in the 
Director’s Research Initiative program, to justify further developments along these lines as part 
of the division mission. 
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Therefore, we set forth, in a kind of white paper, a summary of emerging results and areas we 
deem as having potential for fruitful further development.  The format involves a series of 
discussions of the topics, each ranging from an introduction of concepts to more in-depth 
development and areas for further research.  The reader will notice several aspects to developing 
a decision aid of this sort.  We have made progress on several.  We spell out various topics in the 
hope of coordinating efforts for future researchers, including interns and students.  Various 
design desiderata are set forth as guidance for the coding of the software.  Some additional 
discussion concerning the actual computer work is provided in later portions of the report.  In 
particular, results on the parameter estimation routines and the curve plotting routines are 
examined in some detail. 

We generally assume continuity, as opposed to discreteness, in the systems being discussed.  
However, in some instances discussion of discrete time intervals is more appropriate to the 
analysis, but this is clear in context and should cause the reader no particular confusion.  A 
similar comment applies to nonlinearity, as opposed to linearity.  Also, for the sake of brevity, in 
some cases the terminology is a bit loose, but this will be made stringent in future examinations 
of specific systems. 

1.3 Background 

A fundamental challenge of the 21st century battlefield is to reduce vast amounts of data into 
contextually relevant and actionable knowledge.  Achieving the intent of the Chief of Staff’s 
Army Vision to improve operational jointness and ensure responsive dominance will require 
cognitive amplifiers for application to Future Combat Systems.  By ARL’s treatment of combat 
modeling, we intend to facilitate provision of the right tools for evaluating and improving 
combat effectiveness.  This research focuses on identifying and developing techniques for 
modeling and simulation to meet these fundamental challenges.  The overall objective is to 
develop and evaluate COA tools for the mobile commander in the Future Force.  Enhancement 
of the staff’s planning capability will allow increased options in an engagement.  The technical 
focus is on research into techniques for automated COA evaluation incorporating “reasonable-
time” battlefield information and development of a COA analysis testbed and associated decision 
tools.  An essential part of this work is extension of the mathematics of combat modeling. 

Analysts use differential equations (DEs) to model aspects of combat.  Parts of so-called 
Lanchester theory are fairly well developed.  Such models, generally solved through 
computerized difference equations, can estimate the winner and duration of a conflict and track 
the history of force levels.  More recent aspects include stochastic formulations and examination 
of optimal combat responses.  Moreover, attrition of moving forces lends itself to use of partial 
DEs, which handle density and geometry, and these formulations may permit analysis of 
interpenetration and nonlinear battles in future scenarios. 

Various techniques might be applied to the analysis/assessment/evaluation of a COA, given that 
it has already been derived.  One of particular interest to analysts is wargaming, which may be 
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manual, mathematical, computerized, or a combination.  Several approaches, mostly derived 
from wargaming, are traditionally somewhat feasible in examining changes to battlespace 
parameters (weapons and tactics).  These include combat ratios, firepower potential, history, unit 
effectiveness, rate of advance, casualties, and vehicles lost.  Innumerable ways exist to measure 
or calculate such things.  Moreover, other methodologies utilize these battle statistics as inputs 
for subsequent numerical or symbolic analyses: decision trees, Bayesian belief nets, expert 
system advisors, etc.  We would like to develop a procedure, automated if possible, for 
indicating the effectiveness of forces, COAs, and tactics in various scenarios.  The intent is to 
utilize the killer-victim scoreboards (or other measures of effectiveness) extracted from 
computerized wargame outputs as inputs to the procedure.  A theoretical problem is whether 
there could be a way to evaluate the general utility of forces (or other aspects of the battlespace) 
without regard to specific situations.  What we basically seek is an optimal technique or 
(possibly combined) set of measures, probably "situation dependent," useful for evaluating 
COAs in general (3).   

We considered many aspects of such a project before narrowing it down: the modularity of 
planning and gaming, ongoing work at ARL on genetic algorithms (4), improvement of combat 
simulations (5), commercial AI tools, military scenario-based games, display techniques, 
qualitative physics and model-based reasoning, training vice functional/operational applications, 
and so on.  Some of the work to be discussed emerged from an attempt to address such notions. 

2. Basic Idea 

2.1 Concepts  

We consider as a fundamental concept that one can compare plans or COAs within the context of 
a given scenario.  (Many terms will take on technical meanings in the subsequent development.)  
Such comparison can be done, as alluded to earlier, statically; for instance, whether certain 
aspects of the envisioned conflict are addressed.  However, it makes more sense to do the 
comparison in terms of “trajectory” and realized “end state,” where trajectory and end state are 
related by notions to be discussed.   

We can define a COA in terms of the paths it precipitates in a space of parameters describing the 
conflict.  For example, a (rather simplistic) kind of Blue COA can be defined as a given rate of 
fire and a given rate of movement at a given time.  Such a COA can then be tied into Lanchester 
modeling.  Let us consider that a COA is analogous to a vehicle being controlled through an 
environment.  The environment here reflects the hostile activities of the opponent:  the Red 
“wind” blows the Blue position and strength back.  We can track the Blue and Red strengths (or 
whatever attributes we can meaningfully assess) in another phase plot for monitoring.  The 
details of such tracking, with regard to human-factors-based navigation of a parameter space, 
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will be discussed in section 5 on decision aid aspects.  By way of introduction, figure 1 gives an 
example of a battle trajectory: the plot shows a schematic portrayal of the force ratio over time. 
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Figure 1.  An example of a battle trajectory. 

We therefore take it as a given that we can consider Blue and Red as having abstract trajectories 
in a “battlespace” with regard to missions, assets, and actions.  The idea, then, is to consider a 
model of the conflict, say a system of DEs.  The commander can control certain aspects of the 
battle.  That is, he has reasonable power to modulate certain attributes.  For instance, he might 
modify the number of his troops, via reinforcement or withdrawal, even in the midst of the 
conflict.  To some extent, he can modify the rate at which he kills the enemy (say, increasing it 
by utilizing heavier firepower) and the rate at which the enemy inflicts attrition on his force (say, 
decreasing it by improving defensive posture).  A desirable decision aid would constantly give 
the parametric set(s) that would enable attaining the goal.  This could be demonstrated by having 
an (invisible) enemy changing his values. 

Note there is really nothing special about the form of the model.  As long as we have parameters 
that influence the trajectory, be it discrete or continuous or symbolic or whatever, we can 
proceed with such methodology.  Indeed, as computational power increases, the nature of the 
model can be more and more sophisticated; as the Future Force becomes operational, the data to 
populate such models should become readily available in near real time.  However, even very 
high fidelity models and accurate information may not approximate reality sufficiently well for 
the commander’s purposes.  Therefore, another novel concept set forth in our work is that of 
attempting to adapt (or eventually even actually develop, probably through powerful statistical 
techniques) the model on the fly from observed data.  A fundamental question, then, to be 
considered in some depth later in this report, concerns the feasibility (technical and tactical) of 
computing the parameters or the model itself from the observed values. 

What does it mean for combat to be considered a dynamic system? As a lead in to the 
discussions of analytical methodologies of section 8, we note that a dynamic system can be 
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considered mathematically, in one sense, as a vector field.  As a practical matter for initial 
development of the prototype decision aid, however, we will develop it in terms of set of 
differential equations describing aspects of behavior, basically as functions of time.  Notions of 
space are, initially, fairly abstract.   

The concepts and symbols set forth in table 1 will be necessary for the development of the theory 
and implementation of the proposed decision aid.  Some of these are relatively straightforward, 
but most require some discussion of the underlying philosophy.  (Note that no letter convention 
is followed with regard to a symbol denoting a constant or variable.) 

Table 1.  Concepts and symbols. 

Concept Symbol 
Time (as variable) t  

Friendly (Blue) force level x  
Enemy (Red) force level y  

Rate at which Red kills Blue a  
Rate at which Blue kills Red b  

Blue breakpoint xp  

Red breakpoint yp  

Initial ( = 0) t 0 0,t x (sub 0) 
Specific time of interest τ  

Known/measured variable x  (no mark) 
Desired by Blue xτ% (tilde over variable) 

Assumed by Blue yτ
(

(cup over variable) 

Modeled (by Blue) x̂τ (hat over variable) 

(Blue) desired time to end tω%  

End state (desired by Blue) Ω%  
 

“Breakpoint” connotes the percentage of its initial force level at which a force would attempt to 
disengage and break contact.  The time to end desired by Blue represents the time that Red 
would be defeated, where this is of necessity in this scheme related to other Red parameter(s), in 
particular casualty level.  “Known/measured” means that the Blue commander has sufficient 
ground truth or intelligence to take the value of the attribute as effectively true; “assumed,” on 
the other hand, means that the Blue commander is postulating this attribute to have a certain 
value for his purposes of assessing the mission; and “modeled” means that the value of this 
attribute has arisen from calculations of the active system of equations for the conflict.  In a 
“degenerate” case, we can simplify the analysis somewhat by assuming the breakpoints are 0.  
That is, one side wins when the other is totally annihilated.  However, this is not tactically 
realistic, and the algorithm is not overly complicated by dropping this assumption. 
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Kill rates (or attrition rates) require a little discussion.  Anderson and Miercort (6) note that 
comparisons of combat forces are generally calculated as follows.  All resources on each side are 
grouped into categories.  Each resource is assigned a (nonnegative) score.  These scores, which 
can be functions of the numbers and effectiveness parameters of the resources, are constant 
within categories and can vary across categories.  Force strengths are formed by summing, over 
categories, the product of the number of resources in each category times the score.  
Comparisons of forces are then computed using (real-valued) functions of these strengths and, 
perhaps, other parameters.  Thus one must consider how to calculate scores for resources, and 
how to combine them to form force strengths.  We note that over the years much analytical 
thought has gone into implementing such ideas, but we propose additional developments based 
on our current data mining work and extension of its methodologies (7).   

Thus, for our purposes, kill rate can be computed in terms of the probability of hit times the 
number of shots per individual per unit time.  For example,  is the rate at which a Blue combat 
element destroys a Red combat element, considered derived as a product of the rates of trials and 
probabilities of kill.  That is, in this kind of abstract modeling it is best we consider the 
“effectiveness” of a unit’s action against other units, as opposed to individual weapon vs. 
individual target as in our Killer/Victim Scoreboard analyses (8).  The unit of measurement for 
kill rate may be thought of in terms of (casualties of “target force”)/(strength of “firing force” 
times time).  The rate at which fighting occurs may to a considerable degree be measured in 
terms of the trials with which probabilities of hit and kill are associated.  At time t , 

b

( )Bf t  denotes 
the average rate at which trials are generated by a single Blue force-unit; ( )Rf t  is the 
corresponding rate for a Red unit.  For an individual trial, kill probabilities are denoted by  for 
Blue and  for Red.  The unit killing rates are 

Bk

Rk B Bc k fB= , the number of Reds that a Blue unit 
can kill per unit time and , for the number of Blues that a Red unit can kill per unit of 
time.  Attention is confined mainly to homogeneous forces comprising for each side units 
identical in kill probability and in fighting–rate (9).  Moreover, we tacitly consider an integrated 
“effective” kill rate if the contributions of effects such as reinforcements or disease are not 
known.   

R Rc k f= R

A “plan” or “course of action” for our purposes is defined as: the initial Blue force allocation (a 
positive number), a Blue breakpoint, a desired kill rate (by Blue of Red), a desired time to win, 
assumed initial Red allocation (a positive number), an assumed kill rate (by Red of Blue), and an 
assumed Red breakpoint.  We see that there are three types of parameter: known, desired, and 
assumed.  “Actuality” comprises true force allocations, kill rates, and breakpoints.  Note that in a 
more sophisticated formulation, several parametric values can change as part of the plan: e.g., 
anticipated Blue reinforcement or weakened Red kill rate. 

The phase space of the battle is a fundamental notion.  Phase space, for the purposes of general 
discussion, is the n-dimensional space accessible to an object with  degrees of freedom.  A 
somewhat tighter notion important to subsequent technical discussions is that of manifold, a 

n
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space locally like n-dimensional Euclidean space, but lacking a preferred system of coordinates 
and possibly having unusual global topological properties.  In most of this decision aid 
development, we are concerned with the trajectory, the path of an object through phase space.  In 
particular, we are concerned with characterizing the relative positions and movements of the 
Blue and Red forces in the following technical sense: each force may be thought of as a tuple of 
coordinates, which may include force level, geographical position, kill rate, ability to move, 
ability to communicate, etc.  For the initial formulation leading to a prototype decision aid, we 
consider that the trajectory of the battle occurs in a two-dimensional space: the x-axis is the force 
level of Blue; the y-axis the force level of Red.  As indicated elsewhere, this simplistic start 
results in a number of technical/computational and cognitive/display challenges. 

2.2 Design  

The technique we are considering would permit comparison of a plan, in terms of desired end 
state and other measures, with the trajectory of the conflict in phase space.  During planning, and 
particularly during monitoring, if analysis shows the trajectory does not permit the end state, the 
user would be helped with adjustments enabling the end state or be alerted to the best results 
achievable.  The algorithm involves the following sequence.  Input the model form (based on 
postulated type of operation), parameter values (known, such as Blue force level, and assumed, 
such as Red break point), and desired end state (e.g., by a certain time cause a certain Red 
casualty level before Blue suffers a certain level).  Compute the resulting trajectory; portray 
graphically.  If the end state cannot be met, assess what changes to parameter values must be 
made.  If a parameter is not established, compute what values will enable the end state.  As the 
(simulated, for this project) operation is monitored, when a value change occurs, recompute the 
trajectory.  Determine if the desired end is still achievable.  If it is, reassure the user (perhaps 
with visual indications of changes); if not, compute the parametric region allowing achievement 
and enable user trade-offs.  Further, during battle monitoring, when new data are obtained, the 
model itself can be improved: either explicitly, such as by utilizing direct observations of Blue 
casualties; or implicitly, as in calculating Red attrition rates from force level snapshots.  The user 
is guided to parametric regions allowing end state achievement so that trade-offs can be made if 
necessary.  Values are to be noted as actual or postulated in portrayal of current/projected battle.  
Initially, for concept demonstration, we utilized a simple model with the intent to then increase 
the sophistication, eventually monitoring a high-fidelity combat simulation to better demonstrate 
dynamic model updating. 

This is based in part on the idea of iterative wargaming.  In this paradigm of battle planning, the 
analyst sets forth a COA for a relatively short period of time (or until some significant event 
occurs) and simulates the conflict during that span.  Of course, a desired outcome for the conflict 
and the commander’s intent are guiding the choice.  At the end of the span, the simulation is 
stopped, the results tallied, the situation assessed; and the process begins again with a new COA 
from that point.  So, the notion of trajectory correction is similar in that, when a span is reached 
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in the sense of an updated value for a battle parameter, the situation is assessed for COA 
changes.  The intent of both processes is to bring the long-term goal to fruition if possible. 

If a trajectory does not permit the end state, it should be corrected.  It is possible that in some 
formulations and with some ranges of parametric values the end state is mathematically 
unattainable.  For example, the Blue breakpoint might always occur at a time prior to the Red 
breakpoint with the given model and input ranges.  The user should, of course, be alerted to this 
fact, and the battle would as a practical matter not be entered into.   

In the portion of the algorithm concerned with battle monitoring, we shift the intent slightly.  
Although the concept of checking for ability to reach the desired end state still applies, the nature 
of the analysis changes to comparison of trajectories.  Whenever the commander’s staff obtains 
“intelligence,” the system should use this information, if possible, to update the model.  In our 
initial prototype, the updates take the form of snapshots concerning one or the other force level 
or kill rate.  The data can be explicitly ascertained, as in a Blue casualty report that updates the 
known force level.  At this point, the trajectory of the conflict is recomputed, and hence ability to 
reach the desired end state.  If the end state cannot be reached, the necessary changes to 
parametric values are developed, similarly to the technique in the planning phase. 

The new data may also lead implicitly to model updates.  An example of this is a new Red kill 
rate, which could be based on an assumed Blue kill rate, assumed Red force level, and known 
Blue force level.  Techniques for handling such implicit updating have been the focus of a fair 
amount of research in this project, and their development is discussed in section 7.  
Recomputation of trajectory and end state parametric analyses are essentially the same as for the 
explicit case, at least in our initial model formulation.  There is a possibility that, with some 
model formulations, the implicit case may be handled more efficiently through other methods. 

In any event, there is then a “loop” transition back to the earlier monitoring mode.  Any update 
results in a reassessment of the situation as just noted.  As discussed elsewhere, updates ideally 
are handled as they arise, essentially randomly with regard to type, confidence, and time 
distribution.  We have considered in earlier work (10) methods for transforming, basically 
through interpolation, these into a uniform distribution for ease of computation.  Whether this is 
the best approach from a tactical standpoint, particularly with regard to concerns of levels of 
indirection, remains to be seen.  Notions of sensitivity and computational efficiency also enter 
into the development.  That is, not all updates are of the same utility.  Some, for instance, may in 
effect corroborate the existing model and some may not warrant much additional calculation.  
The rub, of course, is how to ascertain this in a reasonable manner, given the dynamics of actual 
combat. 

2.3 Decision Aid 

The system should develop and plot “envelopes” concerning the trajectory.  We had many 
philosophical discussions among ourselves and with Battle Command Battle Lab personnel 
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about what this really means.  From a technical standpoint, it is not too difficult to calculate 
“parallel” curves (analogous in some ways to confidence intervals) that bound the trajectory by 
placing a range of one or more parameters into the mix.  It is debatable as to whether this has 
tactical utility; for example, in enabling the commander to more easily perform risk or sensitivity 
analyses concerning the feasibility of his plan.  Ultimately, we intend this to be the subject of 
Advanced Decision Architectures Collaborative Technology Alliance (ADA CTA) 
experimentation. 

At any point, we can compare, at least conceptually, planned (desired) Blue and Red trajectories 
with actual values (or estimated/projected values).  Further, we can modify any of these 
trajectories (separately, or more realistically, together) by changing certain defining parameters, 
and perform additional comparisons for sensitivity analysis.  We would like the Blue commander 
to receive warnings like “unless the Blue kill rate is doubled by time τ , the goal will not be 
met.”  

The decision aid should also, in a real sense, answer questions the commander might have 
concerning the planned or unfolding battle.  Again, this has been (and continues to be) the 
subject of much debate.  As examples of the kind of “what-if” questions that appear universally 
desired, we set forth the following.  If the enemy maintains this intensity, how much 
reinforcement do I need at time τ  to reach my goal?  How much do I need to increase my kill 
rate or decrease his in order to win? If I desire the battle to be over by some time interval, and 
know initial troop strengths, what relationship between attrition rates must hold? Such things 
seem intuitive, indeed even straightforward, yet couching them in forms that are mathematically 
tractable while militarily reasonable is proving to be a mixture of both art and science. 

3.  Initial Formulation  

3.1 Motivation 

As mentioned in subsection 1.3, analysts have used DEs for years to model aspects of combat, in 
particular attrition.  Of particular interest is the possibility of parameterized studies to "optimize" 
tactics, force deployments, and weapon characteristics.  For instance, suppose friendly forces 
face an enemy in two echelons.  Is Red better served by committing the second echelon at some 
particular time or by continuous reinforcement? How should Blue counter such tactics? 

New types of DE models may permit other kinds of investigations.  One aspect that might be 
pursued is application of (multi-variate) control theory to determine (even existence of) optimal 
responses in combat situations.  Perhaps we can characterize through proper variables the state of 
the battlefield and what might be meant technically by an objective state.  Then we can analyze 
whether the conflict system can be controlled (perhaps via feedback loops) and whether any state 
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is optimal.  Ultimately, such work might be applied to multistage optimization for monitoring 
and managing battle execution. 

This research could also yield reduced complexity for large simulations; sensitivity analyses may 
show the relative importance of parts of the model, even allowing for reduction of scope if 
certain items are found to be superfluous.  In any event, it would be useful to investigate 
situations and parameters for which greater “fidelity” may not necessarily be better for the 
analysis. 

3.2 Model 

These observations having been offered as motivation, we now consider the initial model, a set 
of ordinary DEs:  

 ,dx dyay bx
dt dt

⎧ ⎫= − = −⎨ ⎬
⎩ ⎭

. (1) 

For obvious reasons, we set forth the constraints .  Subsection 4.1 shows why this 
model is known as the Lanchester “square law” formulation. 

( ), ( ) 0x t y t ≥

The x initial force level and breakpoint are known, the y initial force level and breakpoint 
assumed, and the time to end desired.  The “White” commander (that is, ground truth) inputs 
initial Red level and the kill rates.  The friendly commander inputs initial Blue force level, 
desired rate at which Blue kills Red, and desired goal state.  Examples of goal forms are 

 { | ( ) fy y t }ωτ τ τ∃ = ∩ < % ,  (2) 

where tω%  can be infinite and 

 { | ( ) ( ) }f fy y x xτ τ τ∃ = ∩ > . (3) 

The Blue commander faces the situation {    .  Given the starting levels, the kill rates, 
and the breakpoints, strictly determined are the winner (if not a draw, which is unlikely), ending 
force levels, and battle duration.  Our particular desired end state 

               }
0 0 0 0, , ,y a b( ( % x

Ω%  was defined to be “Red 
reaches his breakpoint before     (condition 1); Blue reaches his breakpoint after     (condition 
2).”  In general, we plan based on the initial set                                        , where the first four 
elements drive the trajectory.  However, at any time we can change any such parameter and re-
evaluate.  We now “start the clock,” and the system traces ( )x t  and ( )y t .  The system also 
calculates and displays in manners to be discussed later the required parameters when changes in 
force levels are observed or postulated.   

ttω% ω
%

0 0 0 0̂ˆ ˆ ˆ ˆ ˆ{ , , , , , , }x yx y a b p p tω%

3.3 Sketch of Algorithm 

We now build on the discussions of section 2.  The prototype development is based on the 
following sketch of an algorithm, which is broken into four subaspects: inputs, end state 
determination, correction guidance, and battle monitoring.  (Our main development is couched as 
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the Lanchester square model, but, again, keep in mind there is nothing magic about that 
particular formulation.  It just enables a convenient prototype and facilitates discussion of 
subsequent concepts.)  The reader will see that development of even an apparently 
straightforward decision aid of this sort offers a number of significant challenges.   

In general, we will have a model formulated in terms of a set of equations.  Now, in augmenting 
this set of equations to form a system, we can input “knowns” (e.g., Blue force level), 
assumptions (e.g., Red force level), and desiderata (e.g., time to end).  Input the model, meaning 
the formulation, the representation of the battle, be it a system of differential equations, a 
complicated simulation, or whatever.  Input the parameter values, meaning the numbers or 
reasoning symbols that drive the current manifestation of the model, which as indicated, has 
several components (actual, postulated, desired, modeled).  Input the desired end state, meaning 
the situation in the conflict to which the Blue commander strives and is requesting assistance 
from the decision aid.  We must determine that all parameters are established as constants 
(although see section 5 on notions such as bounding and what-iffing); initially, this is done 
through interaction with the user. 

Compute the trajectories (meaning the trace of the conflict in parameter space) based on the 
solution equations, through numerical integration, or whatever method is appropriate.  Plot them, 
or at least the one selected as being of interest in the chosen display (for visualization).  Values 
are noted as actual or postulated in portrayals of current/projected battle.  The computation 
immediately establishes whether the end state can be met.  If the end state is achievable, reassure 
the user; if not, compute the region (which may be complicated, as will be discussed later) 
permitting achievability in the overall parameter space.  The aid must guide the user to determine 
what changes might be made to bring about the end state.  If the end state is mathematically 
impossible, the user must be so informed; if the aid determines that it is reasonably impossible to 
complete a required change, then the user should be given a threshold at which to break off 
consideration. 

The next portion, a looping routine, deals with battle monitoring: when a value changes or an 
unknown becomes a known value, update (improve) the model and recompute the trajectories.  
The information may be implicit, such as Red kill rate based on assumed b , assumed , and 
known .  Again, ability to reach the end state is recomputed.  If the end state cannot be reached, 
the system recomputes the changes needed.  The looping for new information then continues. 

y
x

Let us now discuss in a little more detail certain aspects of the algorithm.  The basic initialization 
subalgorithm first merely asks the user to input what he knows, what he assumes, and what he 
desires.  It then checks whether these inputs are consistent, that is, whether the desiderata are 
achievable with the given inputs.  The user initiates the decision aid program, which identifies 
itself to the user and cites the time.  The program then prompts the user for inputs in the planning 
stage.  First, the knowns: initial Blue force level 0x , Blue breakpoint xp  (defined as the fraction 
of 0x  at which Blue stops the conflict), and time to start (which is used for 0t
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planning/replanning purposes in the eventual decision aid; for most of our mathematical 
development at this point, we can take as 0 without loss of generality).  Second, the 
assumptions:  Red force level , rate at which Red kills Blue 

0t
0y( a( , rate at which Blue kills Red b

(
, 

and Red breakpoint      (defined as the fraction of 0y(  at which Red stops the conflict).  Third, the 
desiderata: in this formulation, time to end    .  There are of course many “mechanical” aspects to 
this.  For example, “sanity checking” of breakpoints must ensure these are percentages (and, 
perhaps, reasonable percentages).  We assume that such aspects are handled by the program; 
ideally, they are foolproof graphic inputs.  We also assume for the prototype that all these basic 
inputs are established; however, dealing with uncertainty in the values must form an important 
part of an actual system. 

The program computes Blue and Red trajectories, based on the strictly-determined solution 
equations, and plots them starting at  and ending at the highest time of interest.  Figure 2 
illustrates this schematically.  The plot shows time as the abscissa and force level as the ordinate.  
Moreover, the breakpoints are cited as both time and level for both x and y forces;     is given as a 
vertical line. 

0t

 

Figure 2.  Blue and Red force levels over time. 

Let us call the modeled time at which Blue reaches his breakpoint : x̂t 0
ˆ( )x xx t x p= , where we 

have taken advantage of the monotonicity of the trajectory.  Similarly, we have $ 0
ˆ( )y yy t y p= ( ( .  

Now

0yp y( (

0t tω%

x

y

0xp x

yp(

tω%

tω%
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The program checks whether is achievable: condition 1 of     <     and condition 2 of     < .  If 
these conditions are met, the program so informs the user. 

Ω% x̂tŷt t tω%ω
%

Now the plot thickens, so to speak.  If condition 1 is not met, we want the decision aid to guide 
the user to correct the situation for planning.  More-or-less obvious suggestions can be made 
involving the “raw variables” end time and Red breakpoint; for instance, relax the end time to 
accommodate the calculated value.  (Such suggestions actually turn out to be somewhat less 
obvious than what might be thought, due to their dependency of these on the larger “mix” of 
variables.  This will be considered later in more depth.)  However, we want more sophistication 
for our prototype decision aid. 

In order for trajectories to have value in what-iffing and sensitivity analyses, we must have a way 
to compare them.  Comparisons based on time would seem relatively straightforward, and 
indeed, as a practical matter, this is a tactically reasonable way to proceed.  That is, are the 
desired parameter values plotted over time as the commander desires?  (This will be examined in 
terms of force levels in the initial formulation.  However, deviation from plan is difficult to 
assess even in this simple case, as will be seen.) We might consider comparing parameters 
without the notion of time.  This at first seems more abstract as far as tactical applicability.  
However, meaningful comparisons can be made; again, as will be seen in the initial formulation 
when we examine relative force levels as determining the outcome. 

One question the friendly commander will ask is, “What can I do to move the enemy breakpoint 
time to where I want it?” Since he has no particular influence on  or a0y (  (other than by 
changing his assumptions, which we consider in a subsequent discussion of sensitivity), we see 
we may want to solve for 0x  or in terms of desired enemy breakpoint time.  At this point, we 
need to consider some mathematics. 

b
(

4. Theoretical Preliminaries  

4.1 Fundamental Notions 

We begin with some terminology.  Let us consider a system 

 { }( , , ), ( , , )x f t x y y g t x y= =& & , (4) 

with 0(0)x x=  and , where both 0(0)y = y f and  have continuous first partial derivatives.  The 
functions ,

g
t ( )x x t= , and  in an interval define a solution if  ( )y y t=

 ( ) ( , ( ), ( ))x t f t x t y t=&  (5)  

and  

 ( ) ( , ( ), ( ))y t g t x t y t=&  (6) 

 14



 for all t  in the interval.  Now the ( , )x y -plane is called the phase plane and the parametric curve 
{ }( ), ( )x x t= y y t= is the trajectory of the system.  If the points of a trajectory are in one-to-one 
correspondence with the parameter t , the direction in which t  increases is called the positive 
direction; arrows are sometimes used in plotting to indicate this.  A collection of trajectories is a 
portrait.   

Generalizing to higher dimensions, the vector traces the trajectory in the -dimensional 
phase space of the state vectors, where 

( )tx n
( )t=x x is a solution of ( , )f t=x& x in an interval.  The 

point ( , ) traces a time-state curve in the t ( )tx 1n + -dimensional space of the time and state-
variables.  The projection of this curve onto the ( )-plane is the , it x ix -component graph.  Note 
that in subsequent discussions we may speak of component graphs or other functional traces of 
parameter values as “trajectories,” the meaning being clear in context.   

An autonomous system has the property that only initial position and elapsed time are important 
in phase space: if  

 { ( ),t tα β= < <x x } (7) 

is a solution, then so is  

 { ( ),t k k t kα β= + − < < −x x , k constant}, (8) 

and the trajectories are seen to be identical.  Whether combat in general is an autonomous system 
is open to debate; but note that t  does not explicitly appear in equation 1, so our initial model is 
autonomous.  Anyway, it is apparent autonomous systems are simpler to analyze.   

Continuing to look at our model, since  is not equal to zero in the first quadrant (the region 
of tactical interest), we find  

/dx dt

 /
/

dy dt bx
dx dt ay

−
=
−

 (9) 

or 

 dyay bx
dx

= , (10) 

where time has, in effect, been replaced by x  as the independent variable.  Put another way, the 

initial formulation yields the ratio of the two equations in the system: dx ay
dy bx

= .  Now writing 

this as  

 
0 0

bxdx aydy
τ τ

=∫ ∫  (11) 

yields 
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 2 2 2 2
0 0( ( )) ( ( ))b x x a y yτ τ− = − , (12) 

or  

 , (13) 2 2 2
0( ) ( )ay bx ay bxτ τ− = − 2

0

hence the characterization of equation 1 as the “square law” model (11).   

4.2 Analytical Results 

The so-called “state equation”  

  (14) 2 2 2 2
0 0( ( )) ( ( ))b x x t a y y t− = −

(which does not explicitly consider time as a variable) is in itself useful for deriving results of 
potential utility in our analyses.  For instance, consider the force level ratio .  It turns out 
this ratio satisfies 

/r x y=

 2dr br a
dt

= − . (15) 

This equation provides qualitative information about the force ratio: x is winning if and only 
if / /x y a> b ; a necessary and sufficient condition that x wins a battle to annihilation in finite 
time is 

 0/ /a b x y< 0

2

 (12). (16) 

That is, battle outcome is determined by the initial force ratio and the relative attrition, even 
though there are four parameters in the model.   

Again, writing 

 ,  (17) 2 2 2
0 0( ) ( )ay t bx t ay bx− = −

and calling the right side constant , note that if c 0c < , then x wins, since x  does not vanish, but 

 when 0y = /x c a= .  Blue wants conditions in which 
2

0

0

y a
x b

⎛ ⎞
<⎜ ⎟

⎝ ⎠
.  Due to the quadratic nature 

of this inequality, note that a small increaseε  in  could change the predicted win to a loss: 0y

 
2

0

0

y a
x b
ε⎛ ⎞+

>⎜ ⎟
⎝ ⎠

 (13).   (18) 

Such calculations form the basis for the dynamic decision aid.  Note also the notion of “basin” 
(in the sense of qualitatively different areas of the space) that surfaces in this last observation 
concerning ε . 
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Similarly, the state equation can be manipulated to derive solutions for the force levels as 
functions of time:  

 0 0( ) cosh sinhax t x abt y abt
b

= −   (19) 

and   

 0 0( ) cosh sinhby t y abt x abt
a

= − . (20) 

Further, we have 

 0

0 0

( ) cosh sinhyx t aabt abt
x x b

= − ,  (21) 

showing the force level depends on three derivative parameters: , , and .  It is seen 
that ab  controls the length of the conflict.  Such derivations have been pursued in great detail by 
several researchers, in particular, by Prof. Taylor (12).  However, for decision aiding we must 
consider more realistic conditions such as breakpoints and desired time to finish. 

ab 0 /y x0 /a b

Consider the four main inputs to the model: , , , andx y a b .  These all impact the modeled Red 
breakpoint time, which we shall denote     .  Let us solve for     , and then consider the change in 
each variable, at first separately, that will result in condition 1 being met.  Later, as an 
improvement to the decision aid, we will explore the tradeoff in parameter space that will enable 
this.  Since c  ands , some algebra and the reasonable 
assumption >> 0 yield 

osh ( ) / 2x xx e e−= + inh ( ) / 2x xx e e−= −

ŷt

ŷtt̂ y

 0

0 0

2ˆ ln y
y

y p
t

by x
a

≈

−

( (

(
(

(

.   (22) 

We now have a relation between the modeled enemy breakpoint time and the four Lanchester 
parameters.  We can now develop sliders involving multidimensional plots of the parameter 
space under these conditions.  For example, we can fix     = tω% , , and 0y a( ; and then show a plot 
of 0x  vs. as an indicator of the tradeoff between initial force level and kill rate required to bring 
about the end of the conflict by the desired time.  (This, of course, assumes condition 2 is met.  
We must at some point in the tradeoff analysis check whether the Blue force is diminished to too 
low a level at the desired end time, clearly an unacceptable situation.) Alternatively, we find 

b
( ŷt

 20

0

[ ( 2 )y
yb a e e p
x

τ τ≈ − ]
(

( (% ,  (23) 

where τ  here indicates the desired time of enemy break, computed based on the model solution  
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 0 0 0( ) cosh sinhy
by p y y ab x ab
a

τ τ τ= = −   (24) 

and again assumed >>0. 

Let 

 , (25) 2
0 0/ ,m y x a k b= =

with all quantities positive.  Based on equation 19, the Blue strength level at any time can be 
written as  

 0 0 0 0
1( ) [( ) ( ) ]
2

abt abta ax t x y e x x e
b b

−= − + + ,  (26) 

which implies 

 0( ) [(1 ) (1 ) ]
2

kbt kbtx a ax t m e m e
b b

−= − + + . (27) 

Note that as .  Moreover, , , 0kbt kbtt e e−→ ∞ →∞ → 1 am
b

±  are constants.  If x loses 

(i.e., ), then it is necessary that  0x →

 2
21 0 1a am m a

b b
− ≤ ⇒ ≥ ⇒ ≥

b
m

.   (28) 

Similarly, if 2

ba
m

< , then Blue wins (i.e., ).  Also, note the further one deviates from this 

critical point where 

0y →

2

ba
m

= , the more decisive the win.  Critical values for a  and b  such that 

2

ba
m

=  result in a battle where both forces essentially go to 0.  Values of  greater than a 2

b
m

 

result in Blue losing, and of  less thana 2

b
m

, Blue winning. 

Let km > 1, i.e., Blue loses.  Rewriting equation 27 using k, m, and 0x , and letting E = ekbt, we 
get  

 0 (1 )( ) [(1 ) ]
2
x kmx t km E

E
+

= − + . (29) 

Blue may decide to end the battle when its strength reaches a level less than 0x , say 0xp x , 
where .  Then we have the equation [0,1]xp ∈
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 0
0

(1 )[(1 ) ]
2x
x kmp x km E

E
+

= − + . (30) 

If we multiply equation 30 by –E we get 

 2( 1) 2 (1 )xkm E p E km 0− + − + = . (31) 

The roots of this equation are  

 
2 2 2 1

1
x xp p k m

km
− ± + −

−
.   (32) 

Since  > 0 and the root kbtE e=
2 2 2 1

1
x xp p k m

km
− − + −

−
 is less than 0 for km > 1, it cannot be a 

valid root.  Thus, the only root of interest is 

 
2 2 2

0

1
1

x xp p k m
E

km
− + + −

=
−

. (33) 

In the event x loses, values for  will give a real root of equation 33.  In the event x 
wins, then the x strength level does not fall below some critical value

[0,1]xp ∈

0xcp x , while the y strength 
falls to 0, and a root exists if x xcp p≥

0E E=
; otherwise, no root exists.  A similar argument holds for y.  

We can then solve the equation  or  

 0exp( )kbt Eω =%  (34) 

to obtain 

 0loge E
t

kbω =% . (35) 

In general, equation 30 can be solved numerically for one of the variables { xp , ,b , t }, given 
the other three.  The decision aid might use such calculations to help the commander address 
such situations as the following.  I am involved in a battle, but by  time intervals I need to be 
elsewhere to support another battle.  Having determined I can inflict casualties on the enemy at 
rateb , what casualties can I accept in order to win the battle within  time intervals and retain at 
least

k

et

et
0ep x  of my forces?  The question can be answered by using equation 31 to find the attrition 

rate a  corresponding to the strength needed and equation 34 to determine whether the mission 
can be accomplished within  time intervals. et

We see that the algorithm can be modified to give the maximum attrition rate that allows mission 
accomplishment: answering this question reduces to solving equation 31 for , where , 
yielding the maximum attrition that allows mission accomplishment.  A related situation is:  if 
Red is winning the battle, at some point in  time intervals into the battle what could happen in 

k 2a k b=

et
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terms of force strength or attrition rates so that Blue wins? The critical inequality to consider is: 
Blue wins if , i.e., if .  A Blue win occurs by an increase in strength of 2/a b m< 2ay bx< 2

 /
e et tx a by x∆ > − .   (36) 

Alternatively, if Blue can decrease Red’s attrition rate by 

 
2

2
e

e

t

t

ay
b b

x
∆ > − ,  (37) 

or if Blue can increase its own rate by 

 
2

2
e

e

t

t

bx
a a

y
∆ > − ,  (38) 

then Blue will win.   

5. Aspects of the Decision Aid 

5.1 Introduction 

We now examine this work from a somewhat different perspective.  While still technical, this 
section is less concerned with mathematical modeling and computational algorithms.  It sets 
forth a variety of human-centered display considerations for research and development in pursuit 
of an actual prototype decision aid for model-based execution monitoring.  We postulated 
various displays that show the past, present, future; real, assumed, desired, modeled factors; 
boundaries, confidence levels; and other information of interest to the commander.  Almost any 
one of these could be a project in itself, and we intend that they be approached in an orderly 
manner by a design/programming team. 

At some point in monitoring the battle, we may receive new information.  As sketched earlier, 
we can input the updated parameters and compute a new trajectory from that point (and check 
that the desired outcome is obtainable).  We use the former model’s values at that time to form 
the non-new information, such as Red strength level.  A more complicated computation would 
involve fitting the form of the model to the observed data, and this sort of approach is discussed 
in some detail in section 7.  A more sophisticated interface would be required to explore the 
effects of model formulation on conflict trajectory.  Curve fitting or regression software might be 
leveraged for both these purposes.  An abundance of information is available on curve fitting, 
and many of the software packages mentioned in section 6 utilize curve-fitting algorithms. 

Continuing in a bit more detail, let us again distinguish among model values; that is, consider 
separately the “best estimates” (e.g., $( )x t ) and the actual reported values (e.g., ( )x t ).  Let us now 
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consider the battle to be on; the system is in execution monitoring mode.  At time τ , the Blue 
commander receives a report that ( )x xττ = .  If $( ) ( )x x xττ τ= = , he is on track with regard to the 
plan playing out properly.  If $( ) ( )x xτ τ>  (and all other things being equal – which they are 
probably not, as discussed elsewhere), he is doing better than expected with regard to this 
parameter of interest.  The system now modifies the working model (or more properly for the 
initial prototype, its set of parameter values) to reflect this latest strength information in the 
solution set  

 

$ ˆ( ) cosh ( ) sinh ( )

ˆ ˆ( ) cosh ( ) sinh ( )

ax t x ab t y ab t
b
by t y ab t t x ab t
a

τ τ

τ τ

τ τ

τ τ

⎧
+ = + − +⎪⎪

⎨
⎪ + = + − +⎪⎩

τ
.   (39) 

A new estimate of the end state is also calculated, and if the Blue commander is not satisfied 
with the situation, he can estimate the consequences of changes in parameter values. 

Similarly, if $( ) ( )x xτ τ< , the commander is in trouble (all other things being equal).  Again, the 
model is modified and a new estimate of the end state calculated (presumably Red will win or 
Blue will be too late).  What can the commander do to “correct” the situation? We might 
assume ( )x τ  must be increased to $( )x τ  in order to get back on track; however, a problem arises 
due to the probability that Red is now better off, so computations involving ( )y τ as well now 
become germane. 

At any time, we should be able to display graphically for the commander various aspects of the 
trajectory spaces.  Of fundamental importance is what region he is in, in order to assess whether 
he is meeting his goal with respect to his chosen criterion or criteria.  Of course, auxiliary 
windows should indicate position in different parameter spaces.  The commander would usually 
access such displays purposefully, but if some dangerous situation arises that requires alert 
(perhaps as determined by methods discussed in section 8), the appropriate auxiliary alert 
window should be displayed automatically. 

The commander can also be presented with options given a fixed parameter.  That is, the 
commander would choose a value for “parameter 1” and be presented with a curve in the space 
defined by “parameter 2 (abscissa) and parameter 3 (ordinate)” yielding that value.  Multiple 
such curves should be plottable on the same set of axes. 

5.2 Trajectory Tracking  

It is fundamentally important to be able to plot trajectories under various assumptions.  These 
could generally be displayed in sets, perhaps analogously to iso-surfaces.  The best way for the 
user to immediately grasp information being portrayed is an area of active research that is 
beyond the scope of this effort.  However, the reader is referred to pioneering work being done at 
the Institute for Human and Machine Cognition (14).   
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A related aspect is computation and display of rates of divergence of the actual trajectory from 
that planned.  For simple trajectories and concern with a single parameter, such divergence can 
be handled in a basically intuitive manner.  However, determining what this really means in a 
stringent technical sense turns out to be somewhat difficult.  It is hoped that subsequent research, 
probably utilizing Lyapunov analysis (discussed in subsection 8.4) will shed more light on this 
problem. 

Another aspect of the trajectory of concern to the planner and execution monitor is the rate of 
change along the chosen trajectory.  Auxiliary concerns arise analogously to those just discussed.  
An area of research addressable by cognitive scientists in the ADA CTA (15) is whether 
transformation to the first derivative should be done by the computer prior to displaying such 
information.  That is, are points in a “derivative state space” easier for the user to interpret than 
following the actual motion along the trajectory? In any event, information such as time to reach 
the boundary of a critical region if no parametric values are changed must be developed and 
displayed to the user. 

An even further extension is consideration of “acceleration” in phase space.  That is, analysis of 
second derivatives could help the commander with questions of criticality concerning model 
parameters, particularly with regard to time.  For instance, if the approach to an undesirable 
region is increasingly rapid, determination of parameters and correction of values becomes of 
paramount importance.  One issue that arises in such extensions is that of meaningfulness.  That 
is, as the analysis of the conflict takes on more degrees of indirection, it perhaps becomes less 
relatable to the actual tactical situation.  At the very least, the notion of sensitivity vis-à-vis 
numerical analysis is germane if only in a technical sense. 

One relatively easily developed plot is that of Blue (Red) trajectories as a function of Red (Blue) 
initial force level.  With an appropriate graphical user interface (GUI), the user can explore times 
to reach certain levels as either “dependent” or “independent” variables.  This technique also 
illustrates the notion of a simple possibility envelope, achieved by setting bounds on the assumed 
initial level. 

Another approach to the overall system design shows some promise: develop an allowable 
envelope and track the actual trajectory in that context.  Figure 3 illustrates this schematically; 
the actual trajectory is plotted, with alerts shown as the envelope is intersected.  This seems 
particularly attractive in light of the desire expressed by the U.S. Army Battle Command Battle 
Laboratory that the user be provided not only an alert but also what to do about it.  Of course, 
this could be made more sophisticated by incorporating simple devices such as having the past 
plot fade with age or by color-coding the breaks according to exit/enter top/bottom.  Further, the 
user could be warned and guided based on derivative analysis of apparent approach to the 
envelope.  Time to reach the boundary of a critical region if no parametric values are changed 
could also be displayed. 

 22



 

Figure 3.  Planned trajectory with alerts as actual trajectory breaks envelope. 

As mentioned earlier, we can plot various aspects of the battle.  In particular, in our Lanchester 
formulation, we can look at the force ratio trajectory.  This trajectory is of particular interest, 
since it is readily indicative of battle-state regions, and is a good starting point for further work 
on nonlinear dynamics in the next formulation. 

5.3 Sensitivity Analyses  

We now have, based on the given initial parameters, plots of the Red and Blue trajectories and an 
assessment of whether the enemy can be defeated.  Another form of decision aiding can be 
sensitivity analyses in the form of overlaying on the “real” trajectories variations in which certain 
parameters are “dithered.”  For example, the commander should be able to have sliders in which 
he changes 0x ,b

(
, , or  singularly or in multiple fashion.  (Such notions will be discussed in 

more detail shortly.)  The manifestation on the plot would be shifting trajectories in which the 
user can see the influence.  Of course, the breakpoints can also be changed, resulting in moving 
of the “crosshairs.”  All these are readily computable from the solution equations. 

0y a(
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Various kinds of sensitivity analyses appear to be useful to the staff.  Some of these are discussed 
in other subsections.  One way to perform them is having the user choose a parameter(s) to vary, 
with the others defaulting to (pre)selected values.  With a reasonable GUI, the user can easily 
and dramatically explore interactions among the model parameters, such as the influence of 
enemy initial strength on friendly loss.  Derivative aspects of the trajectory would seem to be 
worthwhile, especially in an extremely time-critical environment.  This notion includes rates of 
change of aspects of the battle, and how they influence the outcome.  Dithering certain values 
and rerunning (or running in parallel) the repercussions would seem to be useful, especially for 
logistical analyses.  This notion includes consideration of possibilities of bad intelligence.  As an 
example, the commander is probably immediately interested in analyses of what happens if the 
enemy force is 10% larger than he is estimating for the game.  Again, the actual tactical utility of 
such capabilities remains to be measured. 

A more sophisticated guidance mechanism would indicate to the user the qualitative nature of his 
proposed changes.  For example, given that the user wishes to “raise” the blue curve, there 
should be a plot in n-dimensional parameter space showing the region(s) in which this occurs.  
We considered natural language type conversations and symbolic aspects of the system to be 
beyond the scope of this project.  However, we will consider a simplified version of this in order 
to explore the navigational aspect of the decision aid.  Let us have a tactically reasonable input 
for the user: desired end time, in the sense of Red break point manifestation.  The trajectories are 
strictly determined, and the end time can be slid back and forth over the graphs, with a changing 
read-out of py, where all other parameters are fixed.  This changing readout has nothing magic, 
though, about  py; by fixing py and selecting, say, x0, the sliding end time can show the changing 
read-out in terms of Blue initial force level required to bring about the desired end time.  This 
can be done for any of the parameters; there is a color-coded indicator to the user of 
given/assumed in the plots and numerical readouts.  It is, of course, up to the user to exercise 
proper military judgment in assessing the options resulting from such “dithering” of the decision 
aid. 

We plot x(t) and y(t) from t0 to, say, twice the input py.  (Again, a nice aspect of the graphical 
decision aid would be to have this window stretchable and automatically scaled.) The input 
delimiters (e.g., Blue breakpoint) are plotted with both vertical and horizontal lines dropped to 
the axes.  The user inputs a time to end tω% by clicking on the plot; a vertical line appears through 
that time, and horizontals as well from the force level plots.  All abscissa/ordinate pairs are 
displayed on the plot, having been immediately calculated from the equations for x(t) and y(t).  
An auxiliary screen appears.  In it is displayed the py associated with the time to end tω% ; this is 
computed easily from                     .  Now the user can drag this vertical line left or right, and the 
changing py is computed and displayed continuously, with the slider “stopped” when py reaches 0 
or 100%. 

y t p 0( ) y yω =%

Now, let us thicken the plot, so to speak.  What is the display like if there are two variables being 
changed?  Let us take a specific example again.  We select py and x0 as the changeable variables.  

 24



Now each position of sliding the desired end time results in a locus of pairs (py, x0) that produce 
the desired result.  Since for any selected τ  we have the model solution (assuming the original 
parametric values) as 

 0 0( ) cosh sinhby y ab x ab
a

τ τ= − τ  (40) 

 (and 0 0( ) cosh sinhax x ab y a
b

bτ τ τ= − ).   (41) 

Note that these make tactical sense only until one side is annihilated.  We can now compute from 
the y-trajectory the function 

 1
0 0 (cosh )( sinh )y

bx y ab p ab
a

τ τ −= − .   (42) 

This curve can be shown in an auxiliary screen; the curve changes as the slider moves, 
changingτ .  Note that there is a relationship between py and x0, rather than having them strictly 
determined.  This may seem strange because, after all, we have two equations in two unknowns 
for any givenτ .  However, the link between the trajectories for x and y is strict, due to the nature 
of the initial model previously analyzed.  Moreover, we had no problem considering py in the 
one-variable case.  This gives a kind of reasonable assistance to the commander, in that he can 
see what his initial force level must be in relation to the Red breakpoint, given a desired end 
time.  Of course, we must still check for a reasonable x trajectory. 

Continuing, let us consider three variables as changeable: we select     , 0x , and .  Each position 
of sliding the desired end time results in a locus of triples (     ,

b
(

0x ,b
(

) that produce the desired 
result.  This surface can be shown in an auxiliary screen, with the surface changing as the slider 
moves.  Now we enter the realm of information displays per se.  For example, software can be 
utilized/developed that enables the user to rotate the surface for better examination.  Another 
possibility is to let the user fix one of the three variables and produce a curve display as 
previously shown.  However, again, we considered this beyond the scope of the project. 

p
py

y

A desirable feature of a COA in general is that it be “robust.” This is usually interpreted to mean 
that the plan produces good results even in the face of widely differing enemy COAs, and is 
assessed by wargaming against a most likely and a most dangerous enemy plan.  In this model-
based decision aid, we would like to continue this notion of robustness, but probably in the form 
of risk assessment.  It seems that sensitivity analytical techniques can be used to examine 
subtleties in the battle construction that could result in “squeakers” or the onset of chaos (a 
notion discussed in subsection 8.3).  These techniques can be either closed-form analytical for 
relatively simple systems like the prototype uses or numerical analytical (or even simulation-
based) for more complicated models.  Development of what might be called confidence bands is 
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a worthwhile extension of the notion of trajectory envelopes:  a new idea is to use deltas in 
parameters to yield bounds and hence probabilities.   

5.4 Qualitative Behavior  

Let us return to the notion of examining the qualitative behavior.  As a practical matter, the user 
may not be looking for exact values of the changeable variables (at least not at first); the user just 
wants to see whether increasing one of the parameters, say, or increasing one and decreasing 
another, brings about the desired result.  We now enter the realm of partial derivatives.  For 
example, go back to the initial example where we were sliding the end time and looking at the 
changes of py.  If we differentiate the solution curve(s) with respect to that variable, we have 
another equation that can be examined similarly.  But this one is in a sense more straightforward, 
in that we have natural regions of positive and negative (“slope”) behavior separated by zeroes.  
This can be transformed back automatically for the user onto the original plot showing where the 
variable produces the desired change. 

This idea is generalizable.  Suppose the user wants to examine the effect on certain variables 
within the model of changes on other variables (where the “change” may involve fixing it as a 
constant).  This requires a shift in thinking to considering the model as a relation or set of 
relations among the variables. 

The notion of “possibility envelopes” is a bit harder to describe.  Perhaps it is best to think of it 
as examining a “tradeoff space.”  It is basically a kind of inverse problem, where the conditions 
that would bring about a desired situation must be derived.  An example might be to calculate 
and display a function of several parameters (a curve or surface in three-space, for example) such 
that any point in this set yields the desired result or range of results, given a selected model 
formulation.   

If any of the enabling conditions is violated, a yellow region can be visualized; if violated 
beyond someε , a red region.  Of course, it is problematic how to assess ε  scientifically, as 
opposed to just having the user make educated guesses.  It is important that the system assess at 
every time (or “phase” of the battle, in the sense of agreed-upon tactically-significant events) 
what conditions would result in not meeting the goal.  For example, from the perspective of 
( , )xττ  what region of -space causes:  (1) defeat of Blue (a red situation), (2) longer time 
to win than desired (yellow situation), and (3) more Blue casualties than desired (yellow 
situation).  Such assessments, if properly visualized (perhaps overlaid with probability curves, 
another challenge), can help the commander assess risk/sensitivity and needs for intelligence or 
change of tactics.  If a slight increase in a would cause many more Blue casualties, we may want 
to reassess our COA.  Visualization may be based on a fixed 

( , , )y a b

( , )xττ , for example, so that the 
desired region is a kind of “floating rectangular solid.” A more sophisticated development, but 
still based on the mathematics of the model, would enable the user to click on any point in this 
space to get the projected time to defeat or lose, Blue casualties, and so forth.  Another type of 
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visualization is exemplified by fixing a at a chosen value and having the system plot curves of 
constant time to end.   

So we see how we can visualize red and yellow situations for a given model.  How do we 
compare plan and reality?  For a desired end state and a given set of fixed parametric values, we 
can assess our ability to reach the end state.  We can click on a point in red/yellow regions to 
check on values of the orthogonal space that might enable the desired end.  We can play the plan 
model in real time and note if snap-shotted actual-combat values fall into red/yellow regions.  
But it would be most valuable to track the motion of these values, warn the user if any is headed 
into a danger region, and offer suggestions about possible corrections.  Moreover, these concepts 
are intimately related to the techniques for analyzing dynamic systems.  The philosophy and 
mathematics behind such a system is discussed in more detail in section 8.   

5.5 Other Desiderata 

Obviously, the ability to display information about all the various parameters is essential.  This 
includes human-centered displays of values (whether actual, assumed, or modeled), relationships 
among them, allowable ranges, and so forth.  A related notion, previously alluded to, is that of 
implementing mouse sensitivity of various objects; moving the cursor over certain regions or 
clicking points on a given curve/axis would automatically display more information about that 
object.  For example, choosing the projected portion of a trajectory might display the actual and 
assumed parametric values that yield it.  Moreover, many aspects can be animated, with colors 
indicating the nature of the portrayed information, such as modeled based on real data, assumed 
data, or both. 

At a given time, there are generally a set of conditions that guarantees the Blue goal, a set 
guaranteeing the Red goal, and a set guaranteeing a “draw.”  Note that we say “generally.”  
Exhaustive characterization/determination of such sets for an arbitrary model is important 
follow-on work.  As mentioned, determining reasonable techniques to display these conditions is 
ongoing research in several arenas. 

It is considered desirable in some circles to show the user the battles.  That is, a graphical 
portrayal of the predetermined simulation and/or the unfolding conflict is displayed on a 
computer screen filled with tactical overlays.  This aspect is somewhat tangential to the intent of 
this initial work.  The model-based results of the prototype decision aid could, however, be tied 
into such a display by future engineering.  It is hoped that some emerging results of the ADA 
CTA can be leveraged in this regard. 

A related notion is to tie in our work on developing and visualizing “terrain ownership.”  Again, 
the idea would be to augment the model-based decision aid results concerning the simulated and 
actual battles by providing the user with a distilled portrayal of realizable combat power in the 
area of operations (7).   
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Many of the sorts of engineering details we have been discussing may seem to be trivial 
mechanical implementations.  Once the mathematical underpinnings are developed for the 
model-based execution monitoring, however, such display aspects are vital to enable a 
reasonable decision aid, and should be developed in conjunction with the other analytical 
aspects.  Indeed, we see that many of them are complex mathematical and cognitive challenges 
in themselves. 

6. Software 

6.1 Consideration of Options 

Based on the developments previously mentioned, there naturally arose several aspects of the 
project to which we thought to apply commercial software packages: differential equation 
solvers, curve fitters, and data plotters for experimental mathematics.  We performed a fair 
amount of investigation into the availability of software both for solution of systems of 
differential equations and for display and evaluation of data in a GUI.  We considered the 
particular design applications arising, and looked in this context at a variety of factors such as 
ease of use, maturity of development, reputation, and expense.   

DE solvers can be based in some senses on algorithms set forth in the Numerical Recipes series 
(16).  Ordinary DE problems can always be reduced to sets of first-order DEs.  New variables 
can be derivatives of each other and the original variable.  Sometimes, one can incorporate some 
power of the independent variable or other factors; different auxiliary variables can often be 
chosen to mitigate computational difficulties.  Solutions can be obtained in finite form for 
equations of all orders having linear constant coefficients.  Infinite series solutions can be 
obtained for many linear equations with variable coefficients.  Good numerical approximations 
can be obtained for equations whose complexity makes them analytically intractable.  It is 
probably true that all solutions of any (solvable) system can be found with reasonable accuracy.  
However, as alluded to earlier, many questions concerning a system can be addressed by 
considering only descriptive properties.  One such notion, stability, will play a vital role in future 
investigations. 

We considered many systems, including: MATLAB, Maple 9, LabVIEW 7 Express, 
OriginPro 7, Gauss 5.0, Scientific WorkPlace, FlexPDE 3, Nmath Core, Interactive Data 
Language, IRIS Explorer 5.0, PV-WAVE, JMP 5, STATISTICA, Mathcad, Mathematica, S-
PLUS, DPGraph, ActivityBase 5.1, JMSL, Diffpack, Tecplot, and EnSight.  We even considered 
certain imaging software, but found it generally too specialized to image analysis per se.  (An 
exposition of the plusses and minuses of these packages might be a useful derivative effort to this 
project.)  As the reader can see, much such software is available as commercial packages.  Of 
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course, many existing Java tools and applets lend themselves to interactive plotting, as may be 
seen by a few Google searches. 

Discussions with various graphics and scientific visualization experts were useful in narrowing 
down the possibilities.  Some of these discussions produced somewhat unexpected results.  For 
instance, MATLAB certainly appeared to be a good possibility.  It includes DE solvers, 
multidimensional data support, and interactive capabilities for 2-D plots and 3-D surfaces.  It 
enables customization of functional source code and linking to external software and data.  
However, discussions with the U.S. Army Research Laboratory (ARL) scientific visualization 
group were discouraging with regard to ease of use of the GUI and lack of availability of a 
current MATLAB “guru.” We similarly eliminated S-PLUS, although useful for canned 
statistical evaluations.  We participated in an ARL seminar on Analysis and Visualization of 
Large Data Sets that helped us with visualization techniques, and a review of Major Shared 
Resource Center projects resulted in additional knowledge concerning high-performance 
computing software that might be leveraged. 

One possibility for enabling a visualization environment template for the prototype, and one that 
is a natural follow-on to collaborative work already being performed in the ADA CTA, is to 
utilize the Seeker-Filter-Viewer technology of the Ohio State University Laboratory for Artificial 
Intelligence Research.  This system, described extensively in various references (17, 18), utilizes 
a Java-based simple GUI by which the commander can specify what data to see in what kind of 
display.  Another opportunity for collaboration is via work being done at the Center for the 
Representation of Multi-Dimensional Information (19).  We have been interacting with Prof.  
Foresti at the University of Utah and, given a proper state of maturity, intend to utilize the 
sophisticated software developed by his multidisciplinary team. 

Various software packages exist for exploring nonlinear dynamics.  All require a graphics 
display (such as video graphics array, enhanced graphics adapter, or color graphics adapter), but 
that should not be a real problem.  Chaos, the Software, by Rucker, Autodesk Inc., illustrates 
various ideas of chaos such as the Mandelbrot set, attractors, magnetic pendulum, and fractals 
(20).  INSITE is a software package of graphical interactive programs useful for examining 
nonlinear systems.  Written in C and running in DOS or UNIX, it is a possibility for future 
algorithmic development (21).  Phaser, by Kocak, is companion software to one of our 
references (22).  A fairly complex program that covers a range of systems and iterated maps, 
Phaser permits the user to analyze specific difference/differential equations of theoretical or 
practical importance with regard to their dynamic behavior.  It has been used for undergraduate 
courses at Brown University, and has sophisticated interactive graphical capabilities that make it 
a useful exploratory research tool.  However, it is somewhat dated.  We have found another tool, 
discussed in the following subsection, that appears well-suited to our work. 

Physics Academic Software makes available several dynamics packages.  Mapper, by Harold, 
computes trajectories, Lyapunov exponents, and Poincaré maps.  It allows entering one’s own 
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equations and handles 2-D iterated maps and DE systems.  Chaotic Dynamics Workbench, by 
Rollins, generates state space diagrams, Lyapunov exponents, and Poincaré maps.  It handles 
systems described by a few ordinary Des and permits changing parameters and examination of 
transients.  Chaos Demonstrations, by Sprott, permits adjustment of certain parameters and 
demonstrates the Mandelbrot set, fractals, DE systems, and iterated maps (20).  Moreover, other 
specific programs are in the literature.  For example, Peitgen et al.  provide a BASIC program 
that computes a particular strange attractor (23).   

6.2 Dynamics Solver 

As just mentioned, the downloadable freeware Dynamics Solver 1.01 appeared to be an excellent 
fit for this project (24).  However, we could not install it on laboratory hardware, due to 
organizational network security restrictions.  However, we describe it here in the hope that 
software restrictions may be lifted for the next phase of this project.  (We opted not to pursue 
funding for other packages until the issues were resolved.) 

Aguirregabiria developed the 32-bit edition of Dynamics Solver for Windows over several years.  
It handles initial- and boundary-value problems for continuous and discrete dynamic systems: 
single ordinary differential equations of arbitrary order, systems of any number of first-order 
ordinary differential equations, a large class of functional-differential equations and systems, and 
iterated maps and recurrences in arbitrary dimensions. 

Generally, no programming is needed.  User-friendly dialog boxes are used for entry.  Numerical 
results and complex graphics may be easily obtained.  A built-in compiler translates a large class 
of mathematical expressions written in a standard format for rapid execution.  One can also 
compute quantities involving the solution and its derivatives, parameters, and initial conditions.  
It is possible to draw phase-space portraits, Lyapunov exponents, histograms, bifurcation 
diagrams, etc.  Results may be projected and subspaces of the phase space or space of initial 
conditions easily analyzed.  Any problem may be saved to and retrieved from an editable disk 
file.  The program is configurable and extensible, and a complete help system is available. 

Different kinds of results in graphics and text formats may be displayed in one or more windows.  
They may be sent to Windows-compatible devices or collected in a file for processing by other 
programs.  Dynamics Solver may be used to construct many geometric figures, including 
parametric curves in two and three dimensions and a large class of fractals.  The goal is to have 
completely correct figures in a device-independent format that can be translated for combination 
with output files from text processors. 

Dynamics Solver is a powerful tool for engineers and mathematicians as well as a teaching 
device concerning dynamic systems.  It is a reasonable numerical laboratory in which problems 
may be more readily analyzed and comprehended and explanatory graphics developed, in many 
cases without programming.  Borrelli and Coleman is a useful companion volume to such efforts, 
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and we hope to utilize the program in such context in follow-on work (24).  However, for this 
project, we were led to consider a contingency route. 

6.3 Contingency 

We have been developing an initial GUI by extending a Java-based plotting routine called JPlot 
(25).  As an indication of the kind of work being done, we cite briefly in this subsection a few 
Java details; more extensive documentation will be released when the code is further along.  For 
the first pass, we constructed the manner in which functions work as generation of an array of (t, 
f(t)) points.  JPlot was written to plot data, not functions, and this appeared to be the quickest 
way to implement functions.  Besides, a delta t should not be smaller than a pixel.  There were 
many design considerations even in leveraging this existing software.  For instance, when (if) the 
plot window is resized, should more points be computed, or should we always compute the same 
number of points based on the screen width? As for entering the functions, initially we preferred 
a list of canned functions for which the user provides the coefficients:  ax + b, ax^2 + bx + c, etc.  
Eventually, there should be a mechanism by which a programmer could provide a function 
written in Java to avoid a clumsy (and complicated) translator. 

We developed a working parser and evaluator for arbitrary expressions.  However, for this initial 
version, the expression must be entered in postfix, or reverse Polish, notation with white space 
between the tokens.  In other words, 2.3+sin(t) becomes “2.3 t sin +.”  The infix form may be 
used for the description that the user sees.  The initial version recognizes six binary operators 
(^*/%+–), 10 unary functions (six trigonometric functions, exp, log, sqrt, abs), the constants pi 
and e, and the independent variable t.  These have all been successfully tested and hooked into 
JPlot.  After some experience with the software, it proved trivial to add new operators, such as 
sinh and cosh.  We are considering the inclusion of neg (as in unary minus).  We wanted to use 
Knuth's parser to convert infix to postfix, but volume 5 of The Art of Computer Programming 
will not be ready until 2010.  However, given that the function can be parsed into a tree, 
volume 1 describes how to traverse the tree and build the postfix equation 25.   

We have also made progress on when and how to build the DataArray, which in turn is plotted.  
We believe the function code has reached a beta level, despite current use of the JTable defaults.  
At this point, a plot of an array of data and a plot of a parsed function may be portrayed on the 
same graph.  The user may define Reverse Polish Notation functions in a function file.  The 24 
letters of the alphabet, besides e and t, may be used as user-defined variables (named constants).  
The parametric range and increment may be supplied in the function file, as may the values of 
the named constants.  When the user attempts to open a graph, the parametric values are checked 
to ensure they are defined and valid (e.g., tmin < tmax and dt > 0).  All variables referenced in 
the function(s) are also checked.  At this point, it is possible a function that is not selected uses 
an undefined variable, which will prevent the graph from being generated, but generally there is 
a small chance of this actually happening.   
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We have added (conditionally) to PlotPanel a button labeled Vars to invoke an editVariables 
method in FunctionFile.  It opens a JDialog containing two buttons and a JTable listing the 
names and values (if any) of all variables used in the current function file.  The system ignores 
variables to which the user may have assigned values but did not use in a function.  The Cancel 
button causes the changes to be ignored, while the OK button copies all of the values into a 
UserVariables array. 

As an example of the GUI, the reader is referred to figure 4, which shows one prototype of the 
Jplot modification being used to input the square law model solution, and figure 5, which shows 
the resulting graph.  This work is leading to a set of software that can link seamlessly with the 
main decision aid algorithms and enable interactive manipulation of the data, both in terms of 
input to the modeling and examination of the output.  More JPlot updates are forthcoming, as 
well as a new application that permits use of sliders to adjust the variables.  Sliders are easier (if 
more restrictive) than a relatively static Jtable for enabling the important requirement of “what 
if” analyses. 

 

Figure 4.  GUI input of the square law solution. 
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Figure 5.  Graph resulting from GUI input. 

In concluding this section, we note that since we could not gain authority to use the package of 
choice, we pursued different avenues.  We did not delve into the experimental aspects of chaos 
and control, but rather looked more into design issues and setting the stage for follow-on 
mathematical and programming developments.  In particular, we developed the parameter 
estimation aspects for the current model and Java plotting routines for the proposed GUI.  We 
decided to go with the Java development, and to pursue use of DPGraph/Dynamics Solver and 
possibly Mathcad for future efforts.  We have not given up completely on utilizing EnSight or 
PC MATLAB, although either of these may be overkill as total packages.  In any event, we note 
that this software issue resulted in a change of plans in this project, and must be resolved to 
allow substantial effort along the lines originally considered.  However, this was considered in a 
sense part of the research; moreover, the unexpected graphics development spin-off may lead to 
improved software for the Java community and a possible GUI patent.  We also plan to pursue 
use of Dynamics Solver, DPGraph, and possibly Mathcad for future efforts.   

7. Estimation of Parametric Values 

7.1 Introduction 

We now resume discussion of mathematical aspects of this project.  As mentioned in the 
conceptual exposition, an important aspect of the prototype is that of improving the model on the 
fly.  In order to do this, we assume that the battle may be monitored for estimated kill rate or, 
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more directly, estimated forces; an updated model of the battle may then be derived from the 
observations.  As a particular application we chose to develop the parameters and  from 
observations of troop strengths at several times.  This led to interesting research into techniques, 
based initially on least squares curve fitting and difference equation approximations, with wider 
potential application. 

a b

If we assume force attrition on the battlefield obeys the Lanchester square law, then the solution 
is known and involves two parameters.  Our original intent was to estimate these two parameters, 
given a set of force levels at various times during a battle.  A recursive relation was found 
between the force level at a time and the forces levels at the previous two times.  This relation 
allowed us to use a conventional least squares technique to determine the two parameters based 
on the available data.   

The accuracy of future force levels is dependent on reported force strengths.  Casualty reporting 
time intervals may depend on a number of factors, including commander’s instructions, strength 
levels of the forces, and perhaps the importance of having timely strength data during the heat of 
battle.  A battle expected to last only hours may require frequent casualty updates, while a battle 
expected to last days may not require as frequent an update cycle.  Although accurate estimates 
of enemy force levels may be difficult to acquire and although attrition will, in general, not be as 
predicted by the calculated solution, smoothing techniques may be used on force levels to 
moderate the lack of precise knowledge, resulting in smaller changes in our estimates of the 
parameters.  Smoothing techniques are used to better approximate the model solution, and an 
algorithm based on weighted moving averages and smoothed “derivative” estimates addresses a 
solution to distant estimates based on limited points. 

Recall the discussion of kill (or attrition) rates in subsection 2.1.  An extension to how 
commanders use their military judgment in assessing kill rates is beyond the scope of this report.  
However, many mathematical approaches are possible and are applied more or less consciously.  
For example, linearization is often used as a first approximation for estimating aspects of the 
battle.  As a crude example, consider the following two observations: at time 0,  and 

; at time 10,  and
(0) 10x =

(0) 100y = (10) 5x = (10) 90y = .  Now, the Blue loss rate over the interval is 
(10–5)/(10–0) = 0.5.  Since these losses were inflicted by an average of (100+90)/2 = 95 Red, 
one argument is that the rate at which Red kills Blue is 0.5/95 = 0.005.  Similarly, the Blue kill 
rate can be computed as ([100–90]/[10–0])/([10+5]/2) = 0.13.  A more sophisticated technique 
we considered, and would like to develop further in future work, is based on the eigenvalue 
method of Anderson known as antipotential potential (27).   

In any event, it would be desirable to present visual estimates of predicted troop strength levels 
to the commander along with the probable outcome of the battle.  Toward this end we developed 
an algorithm to estimate force attrition levels based on reported casualty data.  We made two 
important assumptions in this analysis: attrition obeys the Lanchester square law model as set 
forth by equation 1, and casualties are reported uniformly in time.  Neither of these assumptions 

 34



will, in reality, be strictly true.  However, to the degree they are true, some valuable insights into 
the progress of a battle may be gained. 

The discussion that follows deals mainly with the strength levels of the Blue, or x, force; an 
analogous approach applies for the Red, or y, force.  The general approach to predicting troop 
strength and thereby battle outcome will be the following: 

1. Determine future troop strength recurrence relation based on previous troop strength as a 
function of a single variable c . 

2. Estimate the value of this constant c  based on the available casualty data. 

3. Estimate the individual attrition rates a  and b  for forces x and y, respectively, based on the 
constant c  and the available casualty data. 

4. Based on initial troop strengths 0x  and and attrition rates ,b > 0, predict battle 
outcome and the effects of changes in the attrition rates or the probable outcome if 
additional or fewer troops are available. 

0y a

7.2 Recurrence Relation Derivation  

Given initial troop strengths 0 0,x y  for forces x and y, respectively, and attrition rates a andb , 
and assuming the force algorithm obeys the square law, then the solutions for x and y strengths at 
time  are, as noted in subsection 4.2, t

 0 0 0 0
1( ) [( ) ( ) ]
2

abt abta ax t x y e x y e
b b

−= − + +   (43) 

and 

 0 0 0 0
1( ) [( ) ( ) ]
2

abt abtb by t y x e y x e
a a

−= − + + .   (44) 

For this derivation, we are interested in integral numbers of time intervals and so replace  by an 
integer , where it is understood that a time of  means n  intervals. 

t
n n

A simple recurrence relation for ( )x n  can be derived.  Let  

 abt abtc e e−= + .   (45) 

Strength at time  

  is1n − ( 1) ( 1)
1 2

1( 1) (
2

ab n ab nx n c e c e− − −− = + ) ,  (46) 

where  
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 1 0
ac x y
b

= − 0  (47) 

and 

 2 0
ac x y
b

= + 0 .   (48) 

Multiplication by  yields  c

 ( )( 2) ( 2)
1 2 1 2

1( 1) ( ) ( 2
2

abn abn ab n ab ncx n c e c e c e c e x n x n− − − −− = + + + = + − ) .   (49) 

This finally implies 

 ( ) ( 1) ( 2)x n cx n x n= − − − .   (50) 

A similar derivation holds for y. 

If we knew attrition obeys the square law, and if we knew (0)x , (1)x , , and  exactly, 
then it would be an easy matter to determine the value of  above and therefore predict all future 
strength levels for both forces exactly.  These conditions are generally not satisfied, however, 
and so we must estimate the value of  given imprecise strength levels.  Having a value for  
does not require knowledge of individual attrition rates.  In order to gain knowledge about the 
battle beyond simply predicting force levels, we estimate the individual attrition rates as 
constants based on the actual casualty figures. 

(0)y (1)y
c

c c

7.3 Least Squares Approach 

Given  reported strength levels for x, {2N + | 0,1,..., 1}ix i N= + , we seek to determine a c  value 
that minimizes the sum of the squared differences between the actual strength levels, as reported, 
and the predicted strength levels, as calculated.  Let  

 .   (51) 
1

2
1 2

2
( )

N

i i i
i

S cx x x
+

− −
=

= − −∑

Minimizing  using the least squares approach will yield a particular value for c , say .  Our 
interest in  is that it will allow us to calculate

S 0c
0c ab , since by definition in this case  

 ab abS e e−= + . (52) 

Generally, in more complicated formulations (e.g., considering varying attrition rates as 
functions of time) we would have to solve analogous expressions numerically; however, in this 
case we can generate a closed form solution.  If we multiply equation 34 by abe and let abz e= , 
then we have the following quadratic equation:  

 2
0 1 0z c z− + = .   (53) 
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We solve this to obtain  

 
2

0 0 4
2

c c
z

± −
=  ⇒

2
0 0 4

log ( )
2e

c c
ab

± −
= . (54) 

By the nature of equation 34, we are interested only in the root  

 
2

0 0 4
log ( )

2e

c c
ab

+ −
= . (55) 

Note that the least squares process may give us a <2.  Since the range of the 

function
0c

2ab abe e−+ ≥ , this procedure will fail for <2.  In this case, a default value slightly 
>2 is used.   

0c

Given a value for ab , say 0α , we seek to determine the value for the quantity       .  Using 0α  
and rewriting equation 43, we obtain the equation 

a
b

 0 0 0 00 0( ) ( ) ( )
2 2

t t t tx y ax t e e e e
b

α α α α− −= + + − + .   (56) 

Let  

 0 0 0 0

2
1

0 0

2
( ) ( )

2 2

N
t t t t

i
i

x y aS e e e e
b

α α α α
+

− −

=

⎛ ⎞
= + + − + −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ x .   (57) 

We seek to minimize , which will give us the value for S a
b

 that minimizes the sum of the 

squared differences between the actual and predicted x strength levels.  Suppose the value of 
a
b

 is 1α .   

We now have the following two equations: ab = 0α  and a
b

= 1α .  Solving this system yields 

=a 0 1α α  andb = 0 / 1α α .  These values for a  and b are then, in the least squares sense, the best 
estimates we can make given the realization that reported casualty figures will not strictly adhere 
to the square law. 

7.4 Modifications 

The force strength curve in a real battle would more likely resemble a step function having 
constant strength over a number of time intervals.  In an effort to make the reported strength 
curve more closely resemble the curve one would get if attrition obeyed the square law, we 
modify the originally reported data and generate two additional sets of data. 
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The first modification uses a weighted moving three-point average.  Currently, we use 
, .  The superscript denotes that these values have been 

smoothed. 
1 1( 2 ) / 4s

i i i ix x x x− += + + 1,2,...,i N=

The second modification is more complicated.  A force whose attrition obeys the square law has, 
in addition to a “smooth” strength curve, a “smooth” rate of loss (i.e., first derivative) curve.  In a 
real battle, the loss differences would likely vary wildly as a function of time.  Again, in an effort 
to force the loss difference curve to more closely resemble the curve one would get if attrition 
did obey the square law, we fit a quadratic polynomial to the loss differences.  In this scheme, we 
replace the actual loss differences with ones calculated based on quadratics B  and fitted to the 
backward and forward differences, respectively.  To modify the smoothed point 

F
s

nx , we set  

 ,  (58) 1 1( 2D s B s s F
i i i i i ix x x x x x− += + + + − ) / 4

where B
ix and F

ix are the quadratic-generated derivatives at the i th time interval using the 
backward and forward differences, respectively.  The intent is to take into account the fact that 
nearby points are changing smoothly and predictably in developing a process that will result in 
reasonable strength values.  We place two restrictions on the derivatives generated:  all 
derivatives are less than zero and all derivatives are strictly decreasing.  In the event either of 
these conditions is violated, the terms B

ix and F
ix are ignored in equation 9, which then reduces 

to a weighted moving average of smoothed points. 

For each of the three data sets, we generate  values minimizing the squared errors between 
reported and predicted x levels, similarly for the y levels, and similarly for both x and y 
simultaneously.  For each of the three 

c

ab , values then calculated for each set, we calculate 
the /a b  value minimizing the squared errors for the x force and similarly for y.  For each of the 
18 combinations of ab and /a b we calculate  and .  We rank by size the sum of the 
squared errors, subtract the smallest value from each, and eliminate those beyond a selected 
maximum allowable value

a b

MAXE .  (As an alternative, we ranked errors by the sum of the absolute 
differences, but found such ranking did not change significantly; its effect on the calculation of 
an average  and  was negligible.)  The rest are weighted by a b

 ( , ) ( )KMAX i
i i i

E Ew a b −
=

∆
,  (59) 

where is the actual sum of squared errors, iE ∆  is the partition size, and  is an exponent used to 
change the distribution of the weighting scheme.  The attrition coefficients used for 

characterizing the reported strength data are then 

K

1

1
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N
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ˆ

w

w

N

i i
i

N

i
i
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=

=

=
∑

∑
, where is the 

actual number of  combinations used in the final determination. 

wN

,a b
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A little more discussion on MAXE  is warranted.  This value is basically a function of the number 
of points used in the calculation of the sum of squared errors, and increases with the number of 
points.  For example, if we believe all errors >1000 would indicate a “bad fit” and we chose 

=100 and  (i.e., linear weighting), then we generate weights in [0, 10].  A value of 
increases the range of values to [0,100] and has the effect of giving increasing weight to 

those ’s andb ’s having smaller errors. 

∆ 1K =
2K =
a

The final values used to characterize the reported strength data are then 1

1

ˆ

w

w
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w
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∑
, where  is the actual number of  combinations used in the final determination. wN

7.5 Illustrations 

The following paragraphs describe plots illustrating some of the results of this work.  The plot in 
figure 6 shows the predicted strength using 10 and 20 reported strength levels when force 
strength obeys the square law.  The strength prediction was good and tells us that if casualty 
figures are reported on time and are accurate, then a good estimate of future strength will be 
derived.  Attrition rates are = 0.01, b = 0.02. a

 

Figure 6.  Predicted strength. 
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We calculate a smoothed estimate of the difference in force levels for each time interval 
(figure 7).  XD_EXACT represents the differences one would expect if x strength data were 
generated exactly as a square law model.  XD_ORIG represents the difference after the exact 
strength data was modified to reflect some delay in reporting strength data resulting in constant 
strength over several time intervals.  We replace each calculated difference by the value of 

, for some constant  nominally set to a weighted average of the first few values and for Bt
0A e 0A

B  which minimizes the errors between XD_ORIG and predicted values generated by the 
function  in either the least squares sense or the sum of absolute errors sense.  In this 
instance, the absolute value approach more closely approximated XD_EXACT, although as 
discussed this was generally not the case.  The upper and lower sets of curves used 10 and 20 
points, respectively. 

Bt
0A e

 

Figure 7.  Smoothed estimate. 

The plot in figure 8 shows an example of y force strength levels used by the algorithm.  The 
exact trace of a square law generation is shown as Y_EXACT.  Y_ORIG is derived from 
Y_EXACT by assuming that several time intervals may elapse before casualties are reported.  
Y_DERIV is generated by averaging a smoothed value  with its previous value  and next 
value  projected one time unit forward and backward, respectively, by utilizing our estimates 
of the smoothed derivatives at those points.   

iy 1iy −

1iy +
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Given x and y force strength data X_ORIG and Y_ORIG, we plot the predicted force levels, 
using the algorithm, based on 10-point and 20-point reported strength levels (figure 9).  We 
believe these are good predictions.  Attrition rates are =.01, =.02. a b

The plot in figure 10 shows a situation in which x initially has 600 troops and y has 500 troops, 
but attrition rates are such that if the battle proceeds without change, then x will lose in 88 time 
intervals.  At the fiftieth interval, x and y strengths are 210 and 300, respectively.  At this point, x 
receives an additional 240 troops, which allows x to withstand enough losses and inflict enough 
casualties to win. 

The plot in figure 11 illustrates the quantities used in determining the attrition rates for the two 
forces.  The 18  and b  values are plotted, along with their weights, for each of the ranked 
combinations, as well as the final a _average and _average.  Conditions were: x = 2000, 
y = 4000;  = 0.01,b  = 0.02; casualty reporting delayed by a random number of intervals.   

a
b

a

 

 

Figure 8.  Y-force strength levels. 
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Figure 9.  Predicted strength levels. 

 

Figure 10.  Modified situation. 
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Figure 11.  Attrition rate quantities. 

Figure 12 shows predicted levels of Iraqi forces in Desert Storm based on 5, 10, and 15-day 
assumed casualties.  Daily reports were not available, and the following assumptions were made: 
coalition forces, 360,000; Iraqi forces, 540,000; coalition casualties, 358; Iraqi casualties, 
100,000; duration, 43 days (28).  Attrition rates were chosen so that after 43 days roughly 
100,000 Iraqi troops had been killed.  We calculated force levels assuming a square law and then 
added a random number between –5000 and 5000 to reflect uncertainty of coalition estimates of 
Iraqi casualties.  Agreement between predicted and assumed force levels is quite good.  Note that 
the actual daily casualty figures may be vastly different than what is shown and that these force 
levels reflect a constant attrition rate over the duration of the war.  The agreement between 
predicted force level and the assumed force levels was quite good. 

Figure 13, based on the same scenarios as in figure 12, reflects the situation where Iraqi casualty 
reports were delayed by a randomly selected number of days (uniform distribution between 0 and 
5). 
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Figure 12.  Predicted Iraqi forces. 

 

Figure 13.  Delayed casualty reports. 
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8. Techniques for Analysis of Dynamic Systems  

8.1 Introduction 

We now shift gears a bit to discuss some germane concepts that are being used in ongoing work 
to develop the decision aid with regard to qualitative analyses of the system model.  As 
mentioned earlier, we are seeking application of results in nonlinear dynamics (a portion of 
which is sometimes known as mathematical “chaos” theory) to COA problems.  Philosophical 
expositions concerning sensitivity to small variations in initial conditions have been valuable for 
raising the consciousness of the networks and information integration (NII) community.  
However, we seek rigor in treating combat as a dynamic system.  For instance, we are concerned 
about defining the senses in which combat can be treated in terms of iterative function theory.  
We are also interested in applications of optimal control theory (observability, controllability, 
and stability), particularly since such investigations may ultimately lead to tools for monitoring 
and even correcting divergence from a plan. 

Any analyst, when confronted with understanding or designing a system, will consider certain 
questions.  What are the parameters?  Can they be measured and controlled?  Does the system 
exhibit nonlinearities or feedback?  Is it repetitive?  Is the phase space bounded?  Do the phase 
variables mix?  Particular technical challenges may be expressed in terms of two “simple” 
questions.  Does so much variation exist in combat, given even nominally similar plans and 
scenarios, that there is no way to group them into “bins” of similar trajectory in phase space?  Do 
natural ways exist to develop envelopes, forbidden regions, or attractors that permit assessment 
of the influences of various combat factors?  A related consideration is that of assessing 
confidence in the outcome and, by extension, actual sensitivity analyses of chaotic combat 
situations.   

Difficult problems abound in qualitative investigations of nonlinear systems.  For some, no 
general method has been developed (29); for instance, the existence of integral curves of certain 
kinds not restricted to lie in the neighborhood of a certain singular point, and limit cycles 
characterizing the disposition of integral curves in the large.  Thus, these are worthwhile 
investigations, even in the realm of pure mathematics, and they should be somewhat more 
readily related to when applied to specific systems as we are doing. 

Several commercial or academic software packages designed for “chaos exploration” or “fractal 
exploration” exist and are described briefly in section 6.  We intend to utilize such software in 
conjunction with the other commercial off-the-shelf packages and experimental software for 
further research and development of both the theoretical underpinnings and the actual decision 
aid prototype.  Along these lines, we note another germane use for the large OneSAF/DISAF 
databases mentioned elsewhere in this report.  The results of executing the stochastic simulation 
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based on the same COA inputs can be plotted in different kinds of phase space and analyzed for 
trajectory “bins” and the existence of attractors.  This sort of work is of interest to the U.S.  
Army Battle Command Battle Laboratory and holds much promise for valuable insights into the 
nature of at least certain kinds of combat. 

We are interested in graphically portraying the behavior of continuous-time dynamic systems; in 
particular, limit sets, basins of attraction, and trajectories.  Initially, we consider only second-
order systems, because all possible types of behavior can be displayed in the plane.  Moreover, 
we intend to examine only structurally stable systems due to numerical analytical considerations.  
Such notions will be discussed shortly. 

8.2 Theoretical Notions 

Czerwinski has noted, “By post-Newtonian, we mean the arrangement of nature—life and its 
complications, such as warfare—to be nonlinear, where inputs and outputs are not proportional; 
where phenomena are unpredictable, but within bounds are self-organizing; where 
unpredictability frustrates conventional planning; where solution as reorganization defeats 
control as we think of it; and where a premium is placed on nonlinear reductions.  And where 
rewards go to those who excel in coping with the bounds in order to command and manage—not 
on prediction and control” (30). Also, Weaver suggested three classifications of complexity: 
“organized simplicity,” described by a small number of parameters deterministically linked, but 
some of which can be neglected (and which we generally analyze through mathematical 
modeling); “disorganized complexity,” in which a large number of distinct nondeterministic 
parameters play the main role (and which we tend to describe statistically); and “organized 
complexity,” in which many interrelated but deterministic parameters all contribute to the 
system (31).  We hope further examinations of chaos theory will help us understand the third 
type, of which combat is an example.  With these observations as motivation, we sketch out 
some concepts that will prove helpful in subsequent decision aid development. 

A dynamic system is a way to describe how one state in phase space evolves into another over 
time.  A dynamic system is a smooth action of the real numbers (a continuous system) or the 
integers (a discrete system) on another object.  If f  is a continuous function, the evolution of a 
variable x  can be given by the formula 1 ( )n nx f x+ = .This equation can be transformed into a 
difference equation that forms the discrete analog of the differential equation ( )x f x=& , and the 
difference equation formulation provides some incentive for the solution to and  set forth in 
section 7. 

â b̂

A set of points in phase space is said to be an attractor if it is invariant under the dynamics and 
certain neighboring points asymptotically approach the set.  In particular, an attractor upon 
which trajectories are periodic is said to be a limit cycle; trajectories circle around a limiting 
trajectory which they asymptotically approach.  A set of points in the space of system variables 
such that initial conditions chosen in this set evolve to a particular attractor is said to be a basin 
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of attraction.  An attractor is the smallest unit which cannot be decomposed into more attractors 
with distinct basins, a distinction needed because a system may have several attractors, each with 
its own basin.   

Moreover, in a system with multiple basins of attraction, the boundaries may be in a fractal 
pattern in which nearby initial conditions lead to radically different trajectories.  Decision 
making in such environments will probably be difficult without a detailed aid.  James makes this 
point concerning a decision space formed by the number of reinforcement troops available and 
the time intervals between reinforcements (32).  An interesting question is whether in the tactical 
domain we see fractal boundaries of the basins.  If some trajectories within some epsilon of an 
initial point converge to one attractor and some to another, this point is said to be “unsafe” (23); 
one cannot safely predict the final state associated with the initial point.  Moreover, fractal 
boundaries with a large dimension further hinder predictability in such nonlinear systems.  It is 
obviously important to understand these aspects of combat, if only to try to “know what one does 
not know” or place limits on the reasonableness of attempting to observe or control such 
systems.   

Nicolis and Prigogine point out that in systems having dynamics reducible to a 2-D phase space 
the only attractors are limit cycles and fixed points (33).  With additional dimensions we find 
more complicated topologies of trajectories around these types of attractors, as well as new types 
of behaviors.  One way to explore these is through studying the succession of points in a plane 
that cuts the trajectories; by using the so-called “Poincaré map,” we derive information about the 
attractor.   

8.3 Chaos 

A system described by a function f is said to be chaotic if it (1) is sensitive to initial conditions 
(that is, initially neighboring states can evolve to distant states), (2) has a dense set of states with 
periodic trajectories, and (3) is such that, given any two open sets U  and V , a positive integer  
exists such that the intersection of 

n
( )nf U  and V is not empty (that is, neighborhoods of points 

get flung out eventually to “big” sets) (34).  The first item is the one most popularly associated 
with chaotic systems, “unpredictable” behavior.  Simple physical examples of chaotic systems 
are a pendulum with another attached to the free end and a magnetic pendulum moving over a 
plane containing two attractive magnets.  Motion and end state of both systems are highly 
dependent on initial position and velocity.   

A chaotic system must be bounded, nonlinear, nonperiodic, sensitive to small disturbances, and 
mixing (in the sense just discussed).  James believes these criteria are necessary and sufficient 
(32).  Also, such a system usually has these observable features: transient and limit dynamics, 
parameters, definite transitions to and from chaotic behavior, and attractors.  In 1976, Rössler 
discovered what is probably the most elementary geometric chaotic system: 
{ ( ), , }x y z y x ay z b xz cz= − + = + = + −& & &  (23).  This is an artificial formulation to create a 
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strange attractor using the simple stretch and fold chaos generator.  We are attempting to develop 
an analogously simple system with rationale in the tactical realm.   

Several techniques, such as Greene’s method and resonance overlap, exist for predicting the 
onset of chaos in a system as parameters are adjusted.  However, these are beyond the scope of 
this initial exposition.  Again, follow-on efforts should address the analysis of orbital transition.  
Bradley has developed a (computationally intensive) software approach to controlling chaos in 
electrical circuits, by using information about dynamics on the attractor to control individual 
trajectories to a target point in phase space (35).  A few years ago, this was also being done at 
ARL in the context of communications (36).   

Some detailed mathematical expositions have been done in the combat modeling community 
with regard to chaotic behavior.  For example, Oak Ridge National Laboratory (ORNL) has done 
work on DE-based models (37) exhibiting chaos, and RAND has shown chaos arising from 
certain models, even very simple ones (38).  In particular, Dockery and Woodcock have 
analyzed several models, including Lanchester-based and ones incorporating reinforcement, 
utilizing Lyapunov exponents (discussed in the next subsection) and fractal mathematics (39). 

8.4 Stability 

In studying systems (linear or nonlinear), one generally tries to characterize them by looking for 
equilibria, seeing if they are stable, estimating growth rates, considering behavior resulting from 
perturbation, considering limiting behavior, and so forth as we have been discussing.  We are 
concerned about stability in the face of changing parameters, asymptotic behavior of solutions, 
and periodic or chaotic behavior.   

Qualitative properties can be developed without explicit solutions, which are generally difficult.  
Portraits, usually via numerical solution, provide information about the general behavior.  Time-
space curves are another tool.  Of course, in high dimensions we have the usual visualization 
problems, and may turn to component graphs or other projections of the full state space onto a 
subspace. 

Observe that  gives the slope of the trajectory that passes through the point ( ,/dy dx )x y .  If the 
numerator and denominator are both zero, the point is a critical or equilibrium point of the 
system; if there is a circle around ( , )x y  that contains no other critical point, it is said to be 
isolated.  The isolated critical point is stable if and only if for every distance ε  there is a distance 
δ such that any trajectory that comes within δ of the point remains within ε  of the point 
subsequently.  The point is said to be asymptotically stable if and only if it is stable and every 
trajectory that comes sufficiently close to the point actually approaches the point.   

Wiggins notes that it would be useful if structural stability (where, roughly speaking, this means 
“nearby” systems have “qualitatively the same” dynamics) of a system could be characterized, if 
only since it might be presumed models of natural phenomena should be structurally stable (40).  
Unfortunately, such determination does not exist (although partial results are known).  However, 
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Wiggins discusses at length one approach to such characterization, namely identification of 
generic properties of dynamic systems.  It would be interesting to know whether certain models 
are structurally stable since, by definition, perturbations of unstable dynamic systems can 
produce systems having radically different behavior.  Again, such knowledge would be valuable 
to the commander; however, the mathematical development lies in the future. 

Understanding the nature of possible configurations of trajectories of simple linear systems is 
essential for the descriptive study of general systems.  If an entry in the system matrix of a linear 
system is modified, so are its trajectories, and (as just noted) structures vary in sensitivity to 
parameter changes.  The stability of (0,0) for the system{ , }x ax by y cx dy= + = +& &  (where 

are constants) can be examined via the characteristic equation (the determinant of 
the operational coefficients equated to zero),  

, , , and  a b c d

  (41).   (60) 2 ( ) ( )m a d m ad bc− + + − = 0

Borrelli and Coleman show how to use eigenanalysis to construct the solution of a homogeneous 
linear system with constant coefficients.  They also classify all portraits for a real 2 × 2 matrix, 
based on characteristics of the eigenvalues:  improper node, deficient improper, star, saddle, 
vortex, and spiral (13).  Table 2 gives stability properties of the critical point (0,0) of the linear 
system just mentioned.   

Table 2.  Stability of (0,0) for { ' , ' }x ax by y cx dy= + = + . 

Nature of the  
Characteristic Roots 

 
Nature of the Critical Point 

 
Stability of the Critical Point 

Real, unequal, of like sign Node (improper) Asymptotically stable if roots –; 
unstable if + 

Real, unequal, of unlike sign Saddle point Unstable 

Real and equal Node (proper or improper) Asymptotically stable if roots -; 
unstable if + 

Pure imaginary Center Stable, but not asymptotically 
stable 

Complex but not pure 
imaginary Spiral point Asymptotically stable if real part 

of roots -; unstable if real part +   

 

In particular, expressing the square law equations in the form ( ) ( ) ( )t t t=x A x& results in the 

system matrix .  Hence, the characteristic equation for our initial model 

is , with roots 

0
0
a

b
−⎡

= ⎢−⎣ ⎦
A ⎤

⎥

2 0m ab− = ab± , and therefore the origin is an unstable saddle point.  This is 
also observable in earlier illustrations of the tactically significant quadrant (that is, where x  and 

are both non-negative) of the larger (y , )x y -plane plot of the system.   

As just alluded, if the system is linear, the signs of the real parts of the eigenvalues generally 
determine the stability properties.  Different tools exist for nonlinear systems and one might also 
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look for threshold effects or other aspects.  The most useful tool for nonlinear systems is the 
summarizing function of the system state vector, and it is often possible to describe its behavior 
by an approximate first-order DE.  Analyzing that equation then summarizes the system.  The 
summarizing functions used for examining the stability of nonlinear systems are called 
Lyapunov functions. 

In the method of Lyapunov, stability of complex systems is generally measured in terms of 
“distances” of several evolving states from an equilibrium state and determining whether these 
distances decrease, or by measuring the energies of evolving states and determining whether they 
decline (13).  Lyapunov exponents generalize the notion of eigenvalues at points of equilibrium, 
and can be used to investigate such points, periodic, quasiperiodic and chaotic behavior.  We can 
assess the motion’s instability through the use of the mean exponential rate at which two initially 
close trajectories diverge.  The Lyapunov exponents are the projections along the n independent 
directions in phase space of this mean rate:  

 0
0 0

0

( , )1( , ) lim logl e

t
t

λ =
∆x X

X ∆x
∆x

,  (61) 

where we are considering two trajectories having initial conditions  and  and the 
limit is taken  and 

0X 0 +X ∆x0

t →∞ 0 0→∆x  (33). 

By measuring the sensitivity of trajectories to perturbation, Lyapunov exponents provide 
information that can help the commander find battle states in which a plan is less sensitive to 
disturbance, for instance, of regions of parameter space in which the combat variables may 
produce less predictable outcomes.  We will be examining such calculations in follow-on work, 
possibly utilizing Raglin’s expertise garnered in the image processing realm (42).   

Elementary catastrophe theory deals with equilibria and families of potentials and how these 
equilibria change when external control parameters change.  However, it cannot describe the 
dynamic processes in transitioning between static equilibria.  Moreover, it is difficult to extend 
its results to dynamic systems, which have no analogous canonical forms, although certain 
methods of phase portrait analysis can be used to facilitate analysis of some dynamic systems.  
Qualitative topological methods can provide much information with relatively little effort.  Also, 
catastrophe theory may be applied to problems (such as combat, arguably) in which neither the 
variables nor equations governing the system are known.  Given limited modality, a small 
number of functions of state variables actually drive the system, and qualitative behavior in the 
neighborhood of certain critical points may be reasonably inferred (43).   

Understanding the nature of the manifold upon which the battle trajectories play out would shed 
more light on possibilities for predicting outcomes.  Parker and Chua set forth algorithms useful 
for finding stable and unstable (one-dimensional) manifolds of a second-order system, and note 
that the algorithms can also be applied to higher-order systems (21).  They also note that 
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techniques for finding higher-dimensional manifolds are not known.  Mathematical analysis of 
the phase space itself is a ripe area of research.  Understanding the nature of the manifold upon 
which the battle trajectories play out would shed more light on possibilities for predicting battle 
outcomes.  Notions of conformal mapping and area/volume preservation in phase space may 
seem far removed from actual battle, but investigation of such topics may have its place in 
development of future military decision aids. 

8.5 Deviation From Plan  

As we have discussed, it is important for the commander to appreciate when the events of the 
actual battle are causing, or probably will cause, significant departure from the projected 
trajectory of the conflict as modeled based on his input plans.  Of course, there are many 
simplistic approaches such as just tracking the Blue casualties and alerting the commander 
whenever the number exceeds the postulated number.  However, it would be much more 
valuable to develop meaningful measures of departure, in a spirit of understanding the larger 
dynamics of the conflict.  The fact that we have vectors of parameters characterizing the battle 
makes the mathematics interesting and challenging. 

Certain approaches have been discussed in section 5.  Lyaponov analysis is another possibility.  
Divergence measures could be based on schematics like 

 .   (62) 
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In such a formulation, we could consider the actuality to be critically deviant from the plan if∆  
exceeds some threshold.  But here again the rub is how to choose the threshold in a meaningful, 
dynamic, tractable, and “situation-dependent” manner.  One concept worth considering is that 
the divergence is too great if the model shows the commander will be unable to bring the 
trajectory back to the desired path within some desired time.  This sort of “derivative” modeling 
has been discussed earlier, and forms to a large extent the motivation for the control theoretical 
aspects being pursued. 

We cannot (just) consider time in the analysis, since even relatively simple “phase shifts,” as 
opposed to the “amplitude differences” generally analyzed, could cause apparently dramatic 
departures; we must consider the plan vis-à-vis enemy strength, friendly position, and other 
parameters that are in some senses independent of the temporal flow of the battle.  Moreover, 
both the time-stamped and the event-based indicators are subject to all the uncertainty and error 
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associated with the fog of war.  As indicated in section 7 on parameter estimation, an approach 
dealing with assumed certain updates is challenging enough initially.   

We will be exploring divergence criteria in more depth in follow-on work.  Since we have in 
effect -dimensional pulsating clusters as a function of time, we hope to be able to apply some 
of Liao’s methodology (10, 44).  Further, since time can serve as a “dependent” variable as well, 
we must consider notions of critical deltas and combined deltas.   

n

8.6 Control Theory 

We remind the reader that the idea that some aspects of the conflict are unknown to the 
commander is an important aspect of this project.  With this in mind, we sketch some notions 
that should be quite important in future developments.  If we want to consider the existence of a 
solution to designing an optimal system, we must investigate whether its state is “observable” 
and whether it is “controllable.” Usually, control theoreticians attempt an optimal solution to a 
well-defined, modifiable system.  However, the types of model we have been considering are in 
certain senses unmodifiable.  Moreover, we have found in other related investigations that it is 
difficult to develop an objective function for combat (3).  These aspects of the system probably 
make calculation of observability and controllability more worthwhile than that of an optimal 
solution, which may not even exist (45).  It is hoped that analytical investigations into 
observability, controllability, and stability will yield improved understanding of the dynamics of 
the conflict.   

As noted earlier, our continuous time system can be expressed as ( ) ( ) ( )t t t=x A x& .  The so-called 
state transition matrix, by which multiplication of an initial state vector yields the state at a future 
time, can be calculated from ( )te τ−A , for our time-invariant case.  The details of this development 
are beyond the scope of this exposition; however, we note certain parallels in the recurrence 
relation derivation of subsection 7.2 (46).   

Now, the general form of the state space equations of a lumped-parameter, linear, continuous-
time system is  

 { x A ,( ) ( ) ( )tt t= +x B u& ( ) ( ) ( ) ( )t t t t= +y C x D u }.   (63) 

Typically, the control problem comprises determining what the input  should be so that the 
state  or the output

( )tu
( )tx ( )ty , or both, behave acceptably as the goal of the system is achieved.  

Controllability, a property of the coupling between input and state, involves and B ; 
observability, a property of the coupling between state and output, involves  and C  (47).   

A
A

A system is said to be completely observable if by observing the outputs we can deduce the 
initial state in finite time.  Many control designs are based on the assumption that the state vector 
can be measured completely all the time; the current input is specified as a function of the 
current value of the state vector.  Intelligent control should be based on the current state.  
However, in many systems (in particular our combat model) the entire state vector is not 
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available for measurement (for a variety of reasons), and so control of such systems must be 
based on a subset of the state variables.  One could deal with this by looking for techniques that 
require fewer measurements or by constructing an approximation to the full state vector based on 
measurements that are available.  It can be shown that an approximation to the state can be 
computed by another linear dynamic system whose state vector generates missing information 
about the state of the system being studied (46).   

The system is said to be completely controllable if for  and any 
given  there is a finite  and a piecewise continuous input {

( ) ( ) ( )t t= +x Ax Bu& t 0(0) =x
1x 1t 1( ), [0, ]t t t∈u } such that 

.  It can be shown that a continuous-time system is completely controllable if and only 
if the controllability matrix  is of rank  (46).  Again, the details of 
this exposition are beyond the scope of this report.  However, these sorts of analyses will play a 
significant role in development of sophisticated decision aids that incorporate the notion of 
controlling the battlespace based on observations of the unfolding conflict, particularly if 
appropriate models turn out to be highly nonlinear, as appears likely. 

1( )t =x 1x
12[ , , ,..., ]n−=M B AB A B A B n

Analytical solutions to systems of nonlinear equations are generally not possible.  However, 
there are techniques that can obtain approximate solutions, yielding understanding of the 
behavior of a system when perturbed from a known solution and developing iterative corrections 
often required when controlling such solutions (47).   

9. Future Efforts 

9.1 Extension of Initial Model 

Many extensions are possible, to varying levels of difficulty, to make our simple model less 
abstract and bring it more into line with tactical reality.  For instance, it is well known from 
historical battles that unit “posture” affects kill rates on both sides.  Incorporating this “simple” 
change into the Lanchester formulation results in another degree of internal self-reference and 
complexity.  Similarly, attrition factors are probably dependent on time, as manifested in terms 
of fatigue and destruction of equipment if nothing else.  Change in killing power could be due to 
Blue improved/worsened weapons, Red worsened/improved defense, or changing distance.  
Other changes to the system of differential equations modeling the conflict would be relatively 
straightforward, at least in a theoretical sense if not a tactical.  “Reinforcement” of one or both 
force levels could be brought about by some function; it could be negative, like disease or 
desertion.  Change in breakpoint could be due to morale or commander’s guidance.  Any or all of 
these factors could be considered to be changing in an essentially continuous manner.   

Explicit consideration of troop movements complicates the solution immediately (even if 
handled at a high level of abstraction), as will be discussed in subsection 9.3.  At the least, 
however, we must consider reachability of phase lines and achievement of intermediate goals.  
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More explicit treatments of subconflicts involving split forces and of phases of battle are 
desirable extensions with great analytic power.  Work was initiated in this project along these 
lines, as we considered reinforcement at timeτ , optimal allocation, Blue engaging two Red 
forces, and effects of delay on the assault.  However, much remains to be done; we plan to report 
on such developments in future reports.  A more complicated improvement would be inclusion 
of disparate groups of forces in a multisided game, analogously to that being pursued by other 
ARL researchers (4).  Again, initial mathematical results are setting the groundwork for 
programming algorithms to improve the prototype. 

9.2 Attrition  

Taylor notes several functional forms for attrition rates.  For instance, Lanchester himself 
considered the effect of firer and target strength on both sides in the formulation 

 ,dx dyaxy bxy
dt dt

⎧ ⎫= − = −⎨ ⎬
⎩ ⎭

  (64) 

with state equation  

 0 0( ) (b x x a y y)− = − ,  (65) 

hence the so-called “linear law.”  Considering the effect of target, vice firer strength, on both 
sides yields 

 ,dx dyax by
dt dt

⎧ ⎫= − = −⎨ ⎬
⎩ ⎭

  (66) 

with state equation  

 0 0log loge e
x yb a
x y
= ,  (67) 

hence the “logarithmic law.” 

Considering firer strength on one side and both firer and target strength on the other, 

 ,dx dyay bxy
dt dt

⎧ ⎫= − = −⎨ ⎬
⎩ ⎭

  (68) 

produces the mixed law  

 2 2
0 0( ) (

2
b )x x a y y− = − .   (69) 

As alluded to earlier, such extensions can go on to the limits of the analyst’s abilities to justify 
the formulation and deal with the generally complicated and intractable solutions.  As another 
illustration of this, the system 
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 ,dx dyay x bx y
dt dt

β α⎧ = − − = − −⎨
⎩ ⎭

⎫
⎬   (70) 

could arise by combining square law interactions among forces with fire support that is not 
attrited, or alternatively by considering square law interactions among forces having operational 
losses (48).   

Hartley claims the Lanchester square law and linear laws do not provide good models of combat 
attrition as evidenced by historical data, but that a particular homogeneous linear-logarithmic law 
provides a good approximation to historical data (6).  Another possibility we considered, one 
having some additional theoretical basis, is that of using a Helmbold-type system; for instance,  

 exp(1 ) , exp(1 )dx x dy ya y b
dt y dt x

ω
⎧ ⎫⎛ ⎞ ⎛ ⎞= − − = − −⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎩ ⎭
xω  (49). (71) 

9.3 Next Formulation  

By way of introduction to this subsection, we note the extensions to the initial model cited earlier 
(even significant changes to the attrition representation), although improvements in an abstract 
sense, are obviously not sufficient for combat situations having any basis in reality.  For instance, 
consider positional effect on attrition.  Let us say as a first approximation that lethality follows 
an inverse-square scheme with distance, based on presented area considerations of sensing and 
weapon-delivery error if nothing else.  Again, as a tactically realistic improvement, there should 
be a minimum and maximum range.  Notions such as these are more or less readily incorporated 
into system equations. 

Ancker finds combat theory and modeling basically deficient (50).  However, he asserts that two 
statements can be considered as axioms: a firefight is a terminating stochastic target attrition 
process based on a discrete state space with a continuous time parameter, and all combat is a 
hierarchical network of firefights.  He also notes that stochastic duel theory considers 
“microscopic” features of combat (e.g., time between firings, cover) as opposed to Lanchester’s 
aggregated effects.  He also notes, however, that it has been shown possible to proceed from 
relatively easily measured microscopic parameters (51).  Invoking theoretical relationships then 
helps lend veracity to macroscopic developments.  We hope to investigate such linking of 
granularities in further mathematical analyses by follow-on collaboration with another ARL 
researcher who is extending such work into the realm of survivability analysis (52).   

Battle command is harder to model than attrition, partly because of the immensely complicated 
nature of the interactions among entities.  We realize this sort of work has been debated for years 
in military operations research circles.  For example, there are Spradlin-type extensions 
(discussed in the next subsection) to more realistically model the behavior of an intelligent army.  
Such an entity has radios to relay information instantly, can react to the presence of opposing 
forces before actual contact, learn from mistakes, and not become stuck in undesirable equilibria.  
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Such items can be added incrementally as improvements to the modeling process.  Moreover, our 
basic decision aiding methodology lends itself to essentially any of the formulations considered 
by analysts, given properly tailored mathematical algorithms. 

However, we considered how to modify our initial formulation to reflect the fundamental 
functions of a military entity: shoot, move, and communicate.  The intent was not to definitize 
any particular formulation, but rather to set forth a system that lends itself to incremental 
development in portraying more dimensions of combat beyond simple attrition.  This serves two 
purposes:  (1) enable an extension of the analytical/display aspects of the evolving decision aid 
prototype and, more importantly, (2) produce a dynamic system that can exhibit inherently 
chaotic behavior. 

One approach was to add onto the set of “shoot” attrition equations  

 ,s s
s s

dx dy
ay bx

dt dt
⎧ = − = −⎨
⎩ ⎭

⎫
⎬  (72) 

a “move (or position)” set, say of the form 

 ( ), (p p
s s

dx dy
k y k x

dt dt
α β

⎧ ⎫
= − = − −⎨ ⎬

⎩ ⎭
) ,  (73) 

and a “communicate” set, say of the form  

 ,c c
s s

dx dy
Ax By

dt dt
⎧ ⎫= =⎨ ⎬
⎩ ⎭

.   (74) 

Assume further that Blue is attacking on the move and Red is defending from a stationary 
position.  We make this particular assumption basically in order to leverage the simulation 
results of the DISAF experimentation being done for our datamining research.  However, there is 
some rationale in keeping the formulation relatively simple at first, in a spirit of iteratively 
increasing the sophistication as problems are encountered and solved.  As noted in 
subsection 8.3, even apparently simple systems of equations can produce unexpectedly 
complicated behavior. 

In this context, we considered qualitative descriptions: at fixed distance and communication 
ability, rate of destruction is proportional to strength; at fixed strengths and communication, rate 
of destruction ∝  distance ; at fixed strength and distance, rate of destruction  communication 
of opponent; at fixed strength and distance, rate of destruction 

2− ∝
∝  (own communication) 1− ; at 

fixed strengths, movement  own communication.  These sorts of criteria can be sharpened with 
experience and generalized into other tactical considerations.  Such systems can be much more 
interdependent as attempts to increase realism are made.  For example, we need to develop 
another system of linked equations in which sense/perceive and decide are modeled as well. 

∝
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Modification of attrition to include effects of communications is problematic.  It could be argued 
that in the context of our modeling perfect communication defaults to the basic square law.  If no 
communication among entities exists, one could say that no effective fire, and hence no attrition 
of the enemy, is possible; but that seems unreasonable, even as a first cut, and one should 
probably consider a minimum effect even in the absence of communications.  However, perhaps 
it would be better to consider  with a multiplicative effect on attrition of the form , 
where the parabolic effect is based on an  network centric warfare (NCW) argument 
concerning the number of nodes in a network (53).   

[0,1]C∈ 2C
2n

By considering such arguments, we developed systems of the following form that we intend to 
analyze using the software previously described. 

Shoot:  

 
( )

( )

B
R B

R
B B

dS
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dt
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= − −

= − −
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  (75) 

Move:  

 
( )
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R
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 (76) 

Communicate: 

 

2

2

B
B

R
R

dC AS
dt

dC DS
dt

=

=
 (77) 

These are again notional formulations, where  represents Blue strength,  Blue position,  
Blue communication ability; and analogously for Red.  In any event, the thrust of the 
investigation is to describe mutual qualitative influences, using given extremal input values 
yielding reasonable outputs. 

BS BP BC

Another approach was precipitated by considering the positive-coefficient system  

 { ( )x by x x bxyα α= − + = − +& , ( )y cx y y cxyβ β= − = −& },  (78) 

a model developed by Lotka and Volterra for interaction among a predator population x and a 
prey population y.  The linear terms – xα  and yβ  model decay of predator and growth of prey in 
the absence of the other population.  The quadratics bx  and y cxy−  model the effects of 
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interaction, where the number of interactions is assumed jointly proportional to the population of 
each species: the “mass-action” coefficients  and  measure the predator’s efficiency in 
converting prey into reproduction and the probability that an interaction kills one prey (13).  This 
is an interesting model to consider as a partial basis for the next formulation, not only because of 
the analogies between the natural situation and combat, but because it is a system of nonlinear 
DEs with closed form solution.  Other such models can be developed for situations such as 
competition for resources, cooperation, harvesting, overcrowding, and predator satiation, again 
with parallels in the realm of military conflict. 

b c

Further, by setting  in the Lotka-Volterra system we find equilibria (0,0) and 0x y= =& &

( / , / )c bβ α .  Borrelli and Coleman show that the orbits are closed and the solutions periodic; the 
component curves show predator peaks lag prey peaks, the period of an orbit increases with 
distance from the equilibrium point, and the orbits go clockwise (13).  It is readily apparent that 
these kinds of analytical results, based on combat information available in the modern 
battlespace, could be quite useful to the commander. 

9.4 Modeling Continuous Forces  

We would like to consider methods for dealing with battles in which the combatants are 
distributed in space according to density functions.  For example, in a general formulation each 
differential element of force would engage the enemy according to a kill rate function (e.g., of 
distance to points within the enemy mass) and would be killed at a rate comprising some kind of 
summation over the enemy elements.  Advancement of one or both of the forces would be a 
function of ongoing combat as well as of mission/strategy, so computation of the vector field 
would generally be difficult. 

In a sense, the traditional Lanchester approach is analogous to Lagrangian fluid dynamics.  
However, for modeling the distribution and movement of forces, Eulerian equations are arguably 
more appropriate.  In particular, attrition of forces interacting as a result of movement of the 
forward edge of the battle area lends itself to use of partial DEs, which can naturally handle 
densities and geometry.  In particular, such formulations may permit analysis of interpenetration 
of forces and "unusual" battles that may occur in future scenarios.  However, they are often 
mathematically intractable. 

Spradlin and Fields have augmented the discrete modeling of the individual soldier with larger 
forces represented as continuous density distributions (54).  Then movements and attrition can be 
modeled via variations on reaction-diffusion equations in two spatial variables and time.  We 
need to examine this notion further, building on earlier work by ORNL researchers, in particular 
Azmy and Protopopescu (37).  In guiding troop movement, many factors must be included 
(attrition, terrain, mission, visibility, obstacles, etc.), so computation of the vector field is 
generally difficult.  This work has been pursued for some time, but for greater realism 
improvements to the method are needed, such as reaction prior to contact, instantaneous 
communications, and learning from mistakes.  Certain aspects of controlling the battle, with or 
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without such formulations, were set forth in subsection 8.6.  Perhaps we can eventually 
investigate application of Cauchy analysis to battle execution by means of controlling its 
boundary. 

9.5 Heuristics and Estimation 

A related effort would be investigation of other methodologies for developing numerical values 
for the “Lanchester” coefficients.  Of course, the best situation obtains when the systems can be 
validated by actual combat figures.  Traditionally, this is quite difficult, but we are confident that 
the not-too-distant future will bring the ability to obtain reasonable near-real-time values for 
many of the attributes, at least for Blue.  Such empirical population of the abstract formulation 
might be based on historical data or records of field experiments.  Also, problems of perception 
and measurement noise (associated with the “fog of war”) arise both in the formulation of 
equations and determination of coefficient values. 

Dupuy made valiant attempts to use historical data in modeling combat (55).  He lists 73 
“variable effects factors:”  weapons effects, terrain factors, weather factors, seasonal factors, air 
superiority, posture, mobility effects, tactical air effects, other combat factors, and intangible 
aspects.  He also considers whether they are calculable, sometimes calculable, probably 
calculable but not yet, and probably individually incalculable.  In the last category are morale, 
leadership, as well as (somewhat surprisingly, in our opinion) intelligence and technology.  We 
further note that his work did not involve aspects of NCW or information operations, at least in 
any meaningful sense.   

One issue that emerged during the investigations into parameter estimation was that of 
applicability.  This is not the same as the notion discussed elsewhere as to the practicality of 
applying these sorts of mathematical analyses in general to combat.  Rather, it involves 
considerations of, for example, the numbers of troops required for reasonableness in the 
estimated solutions.  We found that although the basic approach to estimating attrition rates for 
opposing forces seems to work in analyzing cases of conventional combat, there seems to be a 
problem with low attrition values, as in the case of the Iraq war for allied forces.  We are looking 
at combinations of smoothing techniques and schemes for picking the attrition estimates of 
attrition to determine the best method to be used in the majority of cases.  It may prove necessary 
that certain situations require special treatment, a more refined approach.  We hope to develop 
this further in the follow-on efforts. 

Other plans for work in parameter estimation include a mixture of types of improvement.  For 
instance, it is vital that non-constant reporting intervals be addressed, as well as the fact that the 
commander generally gets Blue and Red updates at different times.  Although such items can be 
handled in a sense via interpolation schemes, it is important to consider the tactical reality of 
sporadic updates and estimates of various degrees of certainty.  Dealing with bands of 
uncertainty and their effects on parameter estimation and replanning is a ripe research area.  
More sophisticated approaches to dealing with parameter combinations are being considered; for 
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instance, “running averages” of Blue and Red kill rates and force levels.  Code optimization 
techniques to reduce calculation time are always a factor in our work. 

Further model formulations can be inspired by Dunnigan’s twelve rules of thumb, “historical 
outcomes that consistently repeat themselves (56).”  These are exemplified by (1) combat causes 
losses of 1–5% casualties per day per division, (2) combat vehicles are lost at 5–10 times the rate 
of personnel, and (3) an attacker needs at least three times (varying with size of forces) the 
combat strength to overcome a defender.   

A qualitatively different result of continuation of the project could be a “library” of scenario runs 
categorized in many dimensions.  Utilizing National Training Center exercise data as preserved 
in the Automated Historical Archives System has been cited as a possibility in this regard, as has 
the work of Dupuy (55) and various case-based reasoning researchers such as Thompson (57).  
However, the internal ARL work with OneSAF/DISAF lends itself more directly to this sort of 
ontology due to the control and consistency of the data collection.  We were concerned early on 
about possible difficulties in handling asymmetric warfare.  We knew that guerrilla formulations 
might have to be used for the model if the technique is to be accepted for Future Force missions.  
However, this surfaced somewhat unexpectedly in the form of special requirements needed for 
parameter estimation in casualty situations like those encountered in the Gulf Wars.  Future 
research will extend the techniques used for estimation; and the fact that modern solvers can  
handle most systems of equations should alleviate certain technical problems with the conflict 
formulation.   

9.6 Other Applications 

We intend to use two versions of a single combat simulation program to develop techniques for 
transferring “real-world” data and simulation results back and forth among executing systems.  
For example, process A (using as input a certain COA) would be “monitored” to provide “actual 
execution” battlefield information.  This information would be used to simulate portions of the 
battle in process B, the results of which would be fed back into the “real” battle.  We can thereby 
explore algorithms for determining divergence of combat from the fight and for expeditiously 
developing modifications, including fragmentary orders, to the plan.   

We intend to tie execution monitoring into OneSAF initially and then other simulations such as 
the Joint Military Art of Command Environment.  We have developed sets of files recording the 
execution of a number of runs of two types of scenarios:  a conventional tank battle and an urban 
assault.  These files contain extremely detailed time-stamped information about the unfolding 
battles (5, 58). We have developed programming techniques for converting such information into 
force level updates, and it will be relatively straightforward to utilize these files as drivers to the 
prototype.  As precursors to such an exercise we intend to try simulation-based approaches of a 
different nature; in particular, we will monitor a OneSAF run.  If it is determined that the typical 
trajectory of the scenario is not like the square law, we can develop a simpler simulation where 
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the “real” values extracted for input to the decision aid are in fact developed from a square law 
situation, albeit one unknown to the user of the aid. 

An interesting project would be to consider an historical battle such as Iwo Jima or 73 Easting 
and attempt to improve the outcome via analysis of the dynamics, perhaps by monitoring 
casualties and shifting allocation of firepower.  Another eventual effort could be to use the 
prototype decision aid during an exercise such as Prairie Warrior and see whether the command 
staff found the monitoring and trajectory change suggestions of any real use in modifying their 
tactics or force composition during the play. 

We note that there is nothing special about the orientation of this decision aid work toward the 
Blue commander, other than the fact that he is the intended user and that the information 
available to the friendly side is generally more accurate.  We could use a tool similar to the 
prototype for analyzing the Red situation as well; that is, model-based planning and replanning 
lends itself to applications in intelligence and wargaming as well, due to certain symmetries in 
threat assessment.  A related extension involves consideration of the postulated Red 
commander’s desires and his ability to reach that end state in analyzing the Blue situation.  It is 
hoped we can leverage pioneering work in multisided game theoretical applications to combat 
that is being done at ARL (59). 

In a spirit of sketching out future work on other sorts of decision aiding using the paradigm of 
model-based execution monitoring, we have developed vignettes of different kinds of planning 
and replanning.  Again, these utilize Lanchester modeling as a basis, but the ideas are extensible 
to other formulations.  The intent is to inspire researchers to “think outside the box” about how 
the commander may be helped by computer-based aids.  It may turn out that these sorts of 
mathematical abstractions are in fact too far removed from tactical (especially, small unit) reality 
to be immediately useful to the commander in a particular mission.  However, it is still a 
challenge to prove this rigorously; and the work may still find application to different sorts of 
analysis, including drivers for artificially intelligent assistants. 

One aspect (examined briefly in section 7) along these lines is that of assessing the value of Blue 
troop reinforcement at a given time.  This certainly is not a novel consideration, although the 
idea here would be more one of optimizing the time and amount.  At the least the commander 
should be able to readily ascertain the value of reinforcement contingencies under consideration 
with regard to changing the flow of battle. 

Another larger area of study is that of expanded mathematical analysis of the value of NII.  Put 
somewhat facetiously, what good is battle command?  What does accurate (in the sense of valid 
intelligence, good communications, logical planning, etc.) command and contol buy the planner 
and executor with regard to achieving desired outcome and facilitating contingency planning? As 
the DoD C4ISR Cooperative Research Program (CCRP) has pointed out (60), these notions have 
been studied for years, yet the answer is somewhat elusive.  On the other hand, the CCRP notes, 
“NCW provides opportunities to improve C2 and execution … because (1) decision entities or 
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C2 elements will be more knowledgeable; (2) actor entities will be more knowledgeable; (3) 
actor and decision entities will be better connected; (4) sensor entities will be more responsible; 
and (5) the footprint of all entities will be much smaller” (53). 

Coe and Dockery set forth some sketches of experimentation in partial DEs, stochastic DEs, Q-
analysis, chaotic dynamics, catastrophe theory, cellular automata, fuzzy sets, fractals, and 
measure of effectiveness definition (61).  Woodcock and Dockery also note the development of a 
program of advanced military analysis based on catastrophe theory, singularity theory, 
dissipative structures, reaction-diffusion systems, etc., which is leading to a combination of 
modeling and decision aiding in an “electronic workbench” (62).  Such work must be followed 
up. 

We hope to be able to tie some of these investigations into the work Liao has begun on time 
series analysis of our combat data in understanding battle states (10).  In particular, we hope to 
investigate the possibility of identifying the existence and fractal dimensionality of an attractor 
for a given time series or showing that the system has an irreducible stochastic nature.  
Moreover, it would be desirable to determine the fractal dimension of the attractor (which 
provides information about the system’s predictability and sensitivity to initial conditions) and 
the minimal dimensionality of its phase space (which yields the number of variables that must be 
used in describing the dynamics).  Nicolis and Prigogine suggest an algorithmic approach to such 
investigations that we hope to pursue (33).  In addition to the other types of conflict parameters, 
we will consider the notion of the energy or potential of the battlespace, perhaps building on our 
earlier work on calculating intensity (5).  Again, all of these are potentially of use to the 
commander given a meaningful link between model and reality; with the proper software, we 
look forward to analyzing these aspects of models of tactical systems. 

10. Conclusion 

10.1 Summary  

By way of introduction to this conclusion, we note that, although we have presented several 
sections dealing with apparently disparate topics, they do in fact comprise an integrated “course 
of action” for continuing the work presented up to this point.  The expositions dealt primarily 
with sketches of algorithms for, and interfaces to, a prototype decision aid.  We considered 
several aspects of the analytical theory of dynamic systems, in particular mathematical chaos, 
stability, and control.  Miscellaneous discussions involved “mechanical” follow-on work, such as 
simulated execution monitoring, parameter estimation, and other application-specific items. 

The intent was to build in reasonable stages toward both theory and prototype: define approaches 
to major technical challenges, develop initial algorithms, begin graphical prototype, prototype 
improvements for monitoring of simulated conflict, and begin considerations of control theory 
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applications based on emerging results.  We accomplished some, though not yet all, of what we 
set out to do in this project.  We performed background research into approaches to various 
technical challenges.  We designed an algorithmic solution to a prototype trajectory decision 
aiding system and explored some complexities of navigating parameter trade-off spaces.  We did 
some detailed studies of strength/attrition parameter estimation and calibration techniques.  We 
investigated software packages for solving differential systems and for visualizing and 
interacting with decision aid data.  We examined methods for utilizing the results of 
OneSAF/DISAF executions.  We set the groundwork for formulation of models to produce 
systems exhibiting inherently chaotic behavior and for studying qualitative aspects of phase 
plane trajectories. 

As a result of the research, design, and software engineering begun in this project, we have the 
intellectual material for several in-depth expositions.  These include the details of the parameter 
estimation investigations, applications of chaos theory to the study of military operations, and 
several spin-offs concerning COA theory, in particular the notion of plan divergence.  We have 
more work to do with regard to iterative function theory and control theory applied to combat 
modeling, graphical prototyping, improving combat modeling via consideration of nonlinear 
dynamics, and approaches to applying stability analyses in combat monitoring. 

10.2 Impact 

It is probable that nonlinear analytic techniques will soon be considered as invaluable to 
commanders.  We have seen that time series analysis can permit near-term prediction, attractors 
can indicate probabilities of outcomes, and Lyapunov analysis can help assess relative 
predictability of option results. 

This work, although obviously still in a basic research stage, does have transition potential.  The 
work is intended to lead to portions of an integrated system to dynamically link automated plan 
generation and analysis with execution monitoring.  Careful tuning of software to specific 
missions could improve the quality and timeliness of current planning programs.  This research 
could also yield improved complexity for large simulations.  Perhaps sensitivity analyses may 
show the relative importance of parts of the model, even allowing for reduction of scope.  In any 
event, it would be useful to investigate situations and parameters for which greater detail may not 
necessarily be better for the analysis. 

Extensions of this effort can augment and improve ARL’s ongoing successful research program 
toward methodologies to develop and evaluate COAs and to improve wargaming.  Lessons 
learned may lead to extended COA measures of effectiveness.  This work has potential for 
improving military command and control and analogous civilian systems.  Scientific evaluations 
of plan attributes are of research value to the U.S.  Army Communications—Electronics 
Research, Development, and Engineering Center and the Army Battle Command Battle 
Laboratory, and will benefit the soldier by revealing more numerous operational options during 
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planning and replanning.  Other beneficiaries could include any activity requiring rapid 
evaluation of operational plan status, in particular emergency responders. 

10.3 Issues 

Several programmatic challenges arose over the course of this project.  As mentioned in 
section 6, apparent software security issues resulted in a deviation from the plan; they must be 
addressed to allow substantial future research and development.  Personnel issues and other 
duties negatively impacted concentrated effort throughout the period of performance.  These 
detours did, however, produce an unexpected graphics development spin-off, with potential for a 
possible GUI patent.   

We share the concern expressed in some circles over the ability of abstract systems to model 
combat, particularly military operations on urban terrain, in sufficient detail as to be generally 
tactically useful.  Moreover, we believe discrete dynamics will play a larger part in analyses of 
small unit actions.  However, we maintain that the utility of such techniques will be proven to the 
soldier in the forms of bounding parameters, portraying worst cases, and assessing possibilities.  
It is our vision that when the future force is operational, the Army will be able to effectively and 
efficiently utilize the enormous amounts of data provided by Future Combat Systems. 

10.4 Final Observations  

We trust the reader has been given a flavor of what work in the realm of “A Model-Based 
Approach to Battle Execution Monitoring” might involve over the long run.  This report is 
merely an introduction to the possibilities for such decision aiding science and technology.  
Although we have just scratched the surface in developing a simple prototype, we have touched 
on disparate important aspects: the model, the mathematics, the display, and the dynamic 
analysis.  This project precipitated more work on aspects of the theory of COA analysis and 
battle execution monitoring for replanning.  More discussion of the development of these notions 
is planned for subsequent reports.  We trust this work will be found worthy of continuance, 
because the true research sketched out by this framework is just beginning.   

Collaborations in the form of exchanges and discussions are being pursued with several 
individuals in government and academia.  For example, Dr.  Mary Anne Fields of the ARL 
Weapons and Materials Research Directorate and Dr.  Greg Spradlin of the U.S.  Military 
Academy Mathematical Sciences Department are developing a battlefield model using reaction-
diffusion equations (54).  Jeffrey Smith of the ARL Survivability/Lethality Analysis Directorate 
is developing a method for analyzing survivability in the context of a one-on-one engagement 
(52).  James Thompson of Rice University is exploring applications of Lanchester laws to 
modular wargaming (63).  We plan to share progress with: the Naval Postgraduate School 
Operations Research Department, a center for Lanchester research; the Ohio State University on 
Multicriteria Decision Making; and the National Simulation Center on Command Decision 
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Modeling.  We intend to collaborate further with several of these groups as our work gels into a 
vehicle for more in-depth research.   

This project allowed us the opportunity to examine some novel issues, and we look forward to 
contributing further by extending our research into realms of deception analysis and 
understanding the value of information.  Analyses of nonlinear dynamics, combined with the 
powerful techniques being developed by ARL researchers for combat simulation data mining, 
should result in better understanding of battle “predictors” and much improved battlespace 
decision support.
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